asahi417 commited on
Commit
f12423c
1 Parent(s): 5b71732

model update

Browse files
README.md ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: cc-by-4.0
4
+ metrics:
5
+ - bleu4
6
+ - meteor
7
+ - rouge-l
8
+ - bertscore
9
+ - moverscore
10
+ language: en
11
+ datasets:
12
+ - lmqg/qg_squad
13
+ pipeline_tag: text2text-generation
14
+ tags:
15
+ - question generation
16
+ - answer extraction
17
+ widget:
18
+ - text: "generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
19
+ example_title: "Question Generation Example 1"
20
+ - text: "generate question: Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records."
21
+ example_title: "Question Generation Example 2"
22
+ - text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records <hl> ."
23
+ example_title: "Question Generation Example 3"
24
+ - text: "extract answers: <hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress."
25
+ example_title: "Answer Extraction Example 1"
26
+ - text: "extract answers: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress. <hl>"
27
+ example_title: "Answer Extraction Example 2"
28
+ model-index:
29
+ - name: lmqg/flan-t5-base-squad-qg-ae
30
+ results:
31
+ - task:
32
+ name: Text2text Generation
33
+ type: text2text-generation
34
+ dataset:
35
+ name: lmqg/qg_squad
36
+ type: default
37
+ args: default
38
+ metrics:
39
+ - name: BLEU4 (Question Generation)
40
+ type: bleu4_question_generation
41
+ value: 26.43
42
+ - name: ROUGE-L (Question Generation)
43
+ type: rouge_l_question_generation
44
+ value: 53.37
45
+ - name: METEOR (Question Generation)
46
+ type: meteor_question_generation
47
+ value: 26.99
48
+ - name: BERTScore (Question Generation)
49
+ type: bertscore_question_generation
50
+ value: 90.61
51
+ - name: MoverScore (Question Generation)
52
+ type: moverscore_question_generation
53
+ value: 64.75
54
+ - name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer))
55
+ type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer
56
+ value: 93.31
57
+ - name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer))
58
+ type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer
59
+ value: 93.99
60
+ - name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer))
61
+ type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer
62
+ value: 92.65
63
+ - name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer))
64
+ type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer
65
+ value: 64.59
66
+ - name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer))
67
+ type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer
68
+ value: 65.57
69
+ - name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer))
70
+ type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer
71
+ value: 63.7
72
+ - name: BLEU4 (Answer Extraction)
73
+ type: bleu4_answer_extraction
74
+ value: 35.6
75
+ - name: ROUGE-L (Answer Extraction)
76
+ type: rouge_l_answer_extraction
77
+ value: 68.47
78
+ - name: METEOR (Answer Extraction)
79
+ type: meteor_answer_extraction
80
+ value: 42.76
81
+ - name: BERTScore (Answer Extraction)
82
+ type: bertscore_answer_extraction
83
+ value: 91.28
84
+ - name: MoverScore (Answer Extraction)
85
+ type: moverscore_answer_extraction
86
+ value: 81.31
87
+ - name: AnswerF1Score (Answer Extraction)
88
+ type: answer_f1_score__answer_extraction
89
+ value: 68.88
90
+ - name: AnswerExactMatch (Answer Extraction)
91
+ type: answer_exact_match_answer_extraction
92
+ value: 57.39
93
+ ---
94
+
95
+ # Model Card of `lmqg/flan-t5-base-squad-qg-ae`
96
+ This model is fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) for question generation and answer extraction jointly on the [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
97
+
98
+
99
+ ### Overview
100
+ - **Language model:** [google/flan-t5-base](https://huggingface.co/google/flan-t5-base)
101
+ - **Language:** en
102
+ - **Training data:** [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (default)
103
+ - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
104
+ - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
105
+ - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
106
+
107
+ ### Usage
108
+ - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
109
+ ```python
110
+ from lmqg import TransformersQG
111
+
112
+ # initialize model
113
+ model = TransformersQG(language="en", model="lmqg/flan-t5-base-squad-qg-ae")
114
+
115
+ # model prediction
116
+ question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
117
+
118
+ ```
119
+
120
+ - With `transformers`
121
+ ```python
122
+ from transformers import pipeline
123
+
124
+ pipe = pipeline("text2text-generation", "lmqg/flan-t5-base-squad-qg-ae")
125
+
126
+ # answer extraction
127
+ answer = pipe("generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
128
+
129
+ # question generation
130
+ question = pipe("extract answers: <hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress.")
131
+
132
+ ```
133
+
134
+ ## Evaluation
135
+
136
+
137
+ - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/flan-t5-base-squad-qg-ae/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_squad.default.json)
138
+
139
+ | | Score | Type | Dataset |
140
+ |:-----------|--------:|:--------|:---------------------------------------------------------------|
141
+ | BERTScore | 90.61 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
142
+ | Bleu_1 | 58.99 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
143
+ | Bleu_2 | 42.92 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
144
+ | Bleu_3 | 33.3 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
145
+ | Bleu_4 | 26.43 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
146
+ | METEOR | 26.99 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
147
+ | MoverScore | 64.75 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
148
+ | ROUGE_L | 53.37 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
149
+
150
+
151
+ - ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/flan-t5-base-squad-qg-ae/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_squad.default.json)
152
+
153
+ | | Score | Type | Dataset |
154
+ |:--------------------------------|--------:|:--------|:---------------------------------------------------------------|
155
+ | QAAlignedF1Score (BERTScore) | 93.31 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
156
+ | QAAlignedF1Score (MoverScore) | 64.59 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
157
+ | QAAlignedPrecision (BERTScore) | 92.65 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
158
+ | QAAlignedPrecision (MoverScore) | 63.7 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
159
+ | QAAlignedRecall (BERTScore) | 93.99 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
160
+ | QAAlignedRecall (MoverScore) | 65.57 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
161
+
162
+
163
+ - ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/flan-t5-base-squad-qg-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_squad.default.json)
164
+
165
+ | | Score | Type | Dataset |
166
+ |:-----------------|--------:|:--------|:---------------------------------------------------------------|
167
+ | AnswerExactMatch | 57.39 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
168
+ | AnswerF1Score | 68.88 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
169
+ | BERTScore | 91.28 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
170
+ | Bleu_1 | 49.4 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
171
+ | Bleu_2 | 44.53 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
172
+ | Bleu_3 | 39.73 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
173
+ | Bleu_4 | 35.6 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
174
+ | METEOR | 42.76 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
175
+ | MoverScore | 81.31 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
176
+ | ROUGE_L | 68.47 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
177
+
178
+
179
+
180
+ ## Training hyperparameters
181
+
182
+ The following hyperparameters were used during fine-tuning:
183
+ - dataset_path: lmqg/qg_squad
184
+ - dataset_name: default
185
+ - input_types: ['paragraph_answer', 'paragraph_sentence']
186
+ - output_types: ['question', 'answer']
187
+ - prefix_types: ['qg', 'ae']
188
+ - model: google/flan-t5-base
189
+ - max_length: 512
190
+ - max_length_output: 32
191
+ - epoch: 7
192
+ - batch: 8
193
+ - lr: 0.0001
194
+ - fp16: False
195
+ - random_seed: 1
196
+ - gradient_accumulation_steps: 16
197
+ - label_smoothing: 0.15
198
+
199
+ The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/flan-t5-base-squad-qg-ae/raw/main/trainer_config.json).
200
+
201
+ ## Citation
202
+ ```
203
+ @inproceedings{ushio-etal-2022-generative,
204
+ title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
205
+ author = "Ushio, Asahi and
206
+ Alva-Manchego, Fernando and
207
+ Camacho-Collados, Jose",
208
+ booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
209
+ month = dec,
210
+ year = "2022",
211
+ address = "Abu Dhabi, U.A.E.",
212
+ publisher = "Association for Computational Linguistics",
213
+ }
214
+
215
+ ```
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<hl>": 32100
3
+ }
config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lmqg_output/flan-t5-base-squad-qg-ae/model_eszyci/epoch_2",
3
+ "add_prefix": true,
4
+ "architectures": [
5
+ "T5ForConditionalGeneration"
6
+ ],
7
+ "d_ff": 2048,
8
+ "d_kv": 64,
9
+ "d_model": 768,
10
+ "decoder_start_token_id": 0,
11
+ "dense_act_fn": "gelu_new",
12
+ "dropout_rate": 0.1,
13
+ "eos_token_id": 1,
14
+ "feed_forward_proj": "gated-gelu",
15
+ "initializer_factor": 1.0,
16
+ "is_encoder_decoder": true,
17
+ "is_gated_act": true,
18
+ "layer_norm_epsilon": 1e-06,
19
+ "model_type": "t5",
20
+ "n_positions": 512,
21
+ "num_decoder_layers": 12,
22
+ "num_heads": 12,
23
+ "num_layers": 12,
24
+ "output_past": true,
25
+ "pad_token_id": 0,
26
+ "relative_attention_max_distance": 128,
27
+ "relative_attention_num_buckets": 32,
28
+ "task_specific_params": {
29
+ "summarization": {
30
+ "early_stopping": true,
31
+ "length_penalty": 2.0,
32
+ "max_length": 200,
33
+ "min_length": 30,
34
+ "no_repeat_ngram_size": 3,
35
+ "num_beams": 4,
36
+ "prefix": "summarize: "
37
+ },
38
+ "translation_en_to_de": {
39
+ "early_stopping": true,
40
+ "max_length": 300,
41
+ "num_beams": 4,
42
+ "prefix": "translate English to German: "
43
+ },
44
+ "translation_en_to_fr": {
45
+ "early_stopping": true,
46
+ "max_length": 300,
47
+ "num_beams": 4,
48
+ "prefix": "translate English to French: "
49
+ },
50
+ "translation_en_to_ro": {
51
+ "early_stopping": true,
52
+ "max_length": 300,
53
+ "num_beams": 4,
54
+ "prefix": "translate English to Romanian: "
55
+ }
56
+ },
57
+ "tie_word_embeddings": false,
58
+ "torch_dtype": "float32",
59
+ "transformers_version": "4.26.1",
60
+ "use_cache": true,
61
+ "vocab_size": 32101
62
+ }
eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_squad.default.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"test": {"QAAlignedF1Score (BERTScore)": 0.9331200231801412, "QAAlignedRecall (BERTScore)": 0.9399491642028229, "QAAlignedPrecision (BERTScore)": 0.926485238401098, "QAAlignedF1Score (MoverScore)": 0.6458807796294435, "QAAlignedRecall (MoverScore)": 0.6557030069442409, "QAAlignedPrecision (MoverScore)": 0.6369852357032981, "Bleu_1": 0.2081753330467536, "Bleu_2": 0.11849501493018352, "Bleu_3": 0.0581976187585514, "Bleu_4": 0.032446793938693604, "METEOR": 0.29408615528616006, "ROUGE_L": 0.22568047157912255, "BERTScore": 0.8810365926635368, "MoverScore": 0.6050701891062961}, "validation": {"QAAlignedF1Score (BERTScore)": 0.9318819882475717, "QAAlignedRecall (BERTScore)": 0.9375346887392281, "QAAlignedPrecision (BERTScore)": 0.9263555201099526, "QAAlignedF1Score (MoverScore)": 0.6470905584208508, "QAAlignedRecall (MoverScore)": 0.6539960981502014, "QAAlignedPrecision (MoverScore)": 0.6406423809368123, "Bleu_1": 0.22408145313527597, "Bleu_2": 0.131635084701984, "Bleu_3": 0.0706195936829256, "Bleu_4": 0.042252626422146625, "METEOR": 0.3090637155385741, "ROUGE_L": 0.24523271947693276, "BERTScore": 0.8847284212917537, "MoverScore": 0.6108109436054909}}
eval/metric.first.answer.paragraph_answer.question.lmqg_qg_squad.default.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"validation": {"Bleu_1": 0.5397077587981022, "Bleu_2": 0.3894683483328977, "Bleu_3": 0.3029957720929125, "Bleu_4": 0.24295241492219558}, "test": {"Bleu_1": 0.5173878693653963, "Bleu_2": 0.3640896598763924, "Bleu_3": 0.2774614821234408, "Bleu_4": 0.21762123512998938}}
eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_squad.default.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"validation": {"Bleu_1": 0.44546311059573046, "Bleu_2": 0.400085025119539, "Bleu_3": 0.3562573590762554, "Bleu_4": 0.31804445342030635, "METEOR": 0.402854225669429, "ROUGE_L": 0.6477476611359576, "BERTScore": 0.9095451256973967, "MoverScore": 0.782323161023676, "AnswerF1Score": 65.31658191133377, "AnswerExactMatch": 50.98391674550615}, "test": {"Bleu_1": 0.4939809206541397, "Bleu_2": 0.44534045742642175, "Bleu_3": 0.39731828130525787, "Bleu_4": 0.3560375929213104, "METEOR": 0.427644668930749, "ROUGE_L": 0.6847213583359633, "BERTScore": 0.9127563637716356, "MoverScore": 0.8130886946726135, "AnswerF1Score": 68.87903988763182, "AnswerExactMatch": 57.388229350846174}}
eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_squad.default.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"validation": {"Bleu_1": 0.5866039654295807, "Bleu_2": 0.4320782313242005, "Bleu_3": 0.3407646707956189, "Bleu_4": 0.2761550309866141, "METEOR": 0.2785980684038628, "ROUGE_L": 0.5474548141796508, "BERTScore": 0.9073520105055275, "MoverScore": 0.6597816341847417}, "test": {"Bleu_1": 0.5898626250574781, "Bleu_2": 0.42924329644204656, "Bleu_3": 0.3329598075433257, "Bleu_4": 0.26434686451332623, "METEOR": 0.2698711351472531, "ROUGE_L": 0.5336552955964131, "BERTScore": 0.9061460578147719, "MoverScore": 0.6474941467848804}}
eval/samples.test.hyp.paragraph.questions_answers.lmqg_qg_squad.default.txt ADDED
The diff for this file is too large to render. See raw diff
 
eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_squad.default.txt ADDED
The diff for this file is too large to render. See raw diff
 
eval/samples.test.hyp.paragraph_sentence.answer.lmqg_qg_squad.default.txt ADDED
The diff for this file is too large to render. See raw diff
 
eval/samples.validation.hyp.paragraph.questions_answers.lmqg_qg_squad.default.txt ADDED
The diff for this file is too large to render. See raw diff
 
eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_squad.default.txt ADDED
The diff for this file is too large to render. See raw diff
 
eval/samples.validation.hyp.paragraph_sentence.answer.lmqg_qg_squad.default.txt ADDED
The diff for this file is too large to render. See raw diff
 
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "decoder_start_token_id": 0,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.26.1"
7
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af393bb97e4ab63b2ada8b75af4683c2cad1bd9d532e509bbd3fa3259af9142c
3
+ size 990242997
special_tokens_map.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<hl>"
4
+ ],
5
+ "eos_token": "</s>",
6
+ "pad_token": "<pad>",
7
+ "unk_token": "<unk>"
8
+ }
spiece.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86
3
+ size 791656
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<extra_id_0>",
4
+ "<extra_id_1>",
5
+ "<extra_id_2>",
6
+ "<extra_id_3>",
7
+ "<extra_id_4>",
8
+ "<extra_id_5>",
9
+ "<extra_id_6>",
10
+ "<extra_id_7>",
11
+ "<extra_id_8>",
12
+ "<extra_id_9>",
13
+ "<extra_id_10>",
14
+ "<extra_id_11>",
15
+ "<extra_id_12>",
16
+ "<extra_id_13>",
17
+ "<extra_id_14>",
18
+ "<extra_id_15>",
19
+ "<extra_id_16>",
20
+ "<extra_id_17>",
21
+ "<extra_id_18>",
22
+ "<extra_id_19>",
23
+ "<extra_id_20>",
24
+ "<extra_id_21>",
25
+ "<extra_id_22>",
26
+ "<extra_id_23>",
27
+ "<extra_id_24>",
28
+ "<extra_id_25>",
29
+ "<extra_id_26>",
30
+ "<extra_id_27>",
31
+ "<extra_id_28>",
32
+ "<extra_id_29>",
33
+ "<extra_id_30>",
34
+ "<extra_id_31>",
35
+ "<extra_id_32>",
36
+ "<extra_id_33>",
37
+ "<extra_id_34>",
38
+ "<extra_id_35>",
39
+ "<extra_id_36>",
40
+ "<extra_id_37>",
41
+ "<extra_id_38>",
42
+ "<extra_id_39>",
43
+ "<extra_id_40>",
44
+ "<extra_id_41>",
45
+ "<extra_id_42>",
46
+ "<extra_id_43>",
47
+ "<extra_id_44>",
48
+ "<extra_id_45>",
49
+ "<extra_id_46>",
50
+ "<extra_id_47>",
51
+ "<extra_id_48>",
52
+ "<extra_id_49>",
53
+ "<extra_id_50>",
54
+ "<extra_id_51>",
55
+ "<extra_id_52>",
56
+ "<extra_id_53>",
57
+ "<extra_id_54>",
58
+ "<extra_id_55>",
59
+ "<extra_id_56>",
60
+ "<extra_id_57>",
61
+ "<extra_id_58>",
62
+ "<extra_id_59>",
63
+ "<extra_id_60>",
64
+ "<extra_id_61>",
65
+ "<extra_id_62>",
66
+ "<extra_id_63>",
67
+ "<extra_id_64>",
68
+ "<extra_id_65>",
69
+ "<extra_id_66>",
70
+ "<extra_id_67>",
71
+ "<extra_id_68>",
72
+ "<extra_id_69>",
73
+ "<extra_id_70>",
74
+ "<extra_id_71>",
75
+ "<extra_id_72>",
76
+ "<extra_id_73>",
77
+ "<extra_id_74>",
78
+ "<extra_id_75>",
79
+ "<extra_id_76>",
80
+ "<extra_id_77>",
81
+ "<extra_id_78>",
82
+ "<extra_id_79>",
83
+ "<extra_id_80>",
84
+ "<extra_id_81>",
85
+ "<extra_id_82>",
86
+ "<extra_id_83>",
87
+ "<extra_id_84>",
88
+ "<extra_id_85>",
89
+ "<extra_id_86>",
90
+ "<extra_id_87>",
91
+ "<extra_id_88>",
92
+ "<extra_id_89>",
93
+ "<extra_id_90>",
94
+ "<extra_id_91>",
95
+ "<extra_id_92>",
96
+ "<extra_id_93>",
97
+ "<extra_id_94>",
98
+ "<extra_id_95>",
99
+ "<extra_id_96>",
100
+ "<extra_id_97>",
101
+ "<extra_id_98>",
102
+ "<extra_id_99>"
103
+ ],
104
+ "eos_token": "</s>",
105
+ "extra_ids": 100,
106
+ "model_max_length": 512,
107
+ "name_or_path": "lmqg_output/flan-t5-base-squad-qg-ae/model_eszyci/epoch_2",
108
+ "pad_token": "<pad>",
109
+ "sp_model_kwargs": {},
110
+ "special_tokens_map_file": "/home/younes_huggingface_co/.cache/huggingface/hub/models--google--t5-v1_1-base/snapshots/650d7745bf1e502d6949b22cc19155cd656d3d4e/special_tokens_map.json",
111
+ "tokenizer_class": "T5Tokenizer",
112
+ "unk_token": "<unk>"
113
+ }
trainer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"dataset_path": "lmqg/qg_squad", "dataset_name": "default", "input_types": ["paragraph_answer", "paragraph_sentence"], "output_types": ["question", "answer"], "prefix_types": ["qg", "ae"], "model": "google/flan-t5-base", "max_length": 512, "max_length_output": 32, "epoch": 7, "batch": 8, "lr": 0.0001, "fp16": false, "random_seed": 1, "gradient_accumulation_steps": 16, "label_smoothing": 0.15}