model update
Browse files- README.md +215 -0
- added_tokens.json +3 -0
- config.json +62 -0
- eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_squad.default.json +1 -0
- eval/metric.first.answer.paragraph_answer.question.lmqg_qg_squad.default.json +1 -0
- eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_squad.default.json +1 -0
- eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_squad.default.json +1 -0
- eval/samples.test.hyp.paragraph.questions_answers.lmqg_qg_squad.default.txt +0 -0
- eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_squad.default.txt +0 -0
- eval/samples.test.hyp.paragraph_sentence.answer.lmqg_qg_squad.default.txt +0 -0
- eval/samples.validation.hyp.paragraph.questions_answers.lmqg_qg_squad.default.txt +0 -0
- eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_squad.default.txt +0 -0
- eval/samples.validation.hyp.paragraph_sentence.answer.lmqg_qg_squad.default.txt +0 -0
- generation_config.json +7 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +8 -0
- spiece.model +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +113 -0
- trainer_config.json +1 -0
README.md
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
license: cc-by-4.0
|
4 |
+
metrics:
|
5 |
+
- bleu4
|
6 |
+
- meteor
|
7 |
+
- rouge-l
|
8 |
+
- bertscore
|
9 |
+
- moverscore
|
10 |
+
language: en
|
11 |
+
datasets:
|
12 |
+
- lmqg/qg_squad
|
13 |
+
pipeline_tag: text2text-generation
|
14 |
+
tags:
|
15 |
+
- question generation
|
16 |
+
- answer extraction
|
17 |
+
widget:
|
18 |
+
- text: "generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
|
19 |
+
example_title: "Question Generation Example 1"
|
20 |
+
- text: "generate question: Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records."
|
21 |
+
example_title: "Question Generation Example 2"
|
22 |
+
- text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records <hl> ."
|
23 |
+
example_title: "Question Generation Example 3"
|
24 |
+
- text: "extract answers: <hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress."
|
25 |
+
example_title: "Answer Extraction Example 1"
|
26 |
+
- text: "extract answers: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress. <hl>"
|
27 |
+
example_title: "Answer Extraction Example 2"
|
28 |
+
model-index:
|
29 |
+
- name: lmqg/flan-t5-base-squad-qg-ae
|
30 |
+
results:
|
31 |
+
- task:
|
32 |
+
name: Text2text Generation
|
33 |
+
type: text2text-generation
|
34 |
+
dataset:
|
35 |
+
name: lmqg/qg_squad
|
36 |
+
type: default
|
37 |
+
args: default
|
38 |
+
metrics:
|
39 |
+
- name: BLEU4 (Question Generation)
|
40 |
+
type: bleu4_question_generation
|
41 |
+
value: 26.43
|
42 |
+
- name: ROUGE-L (Question Generation)
|
43 |
+
type: rouge_l_question_generation
|
44 |
+
value: 53.37
|
45 |
+
- name: METEOR (Question Generation)
|
46 |
+
type: meteor_question_generation
|
47 |
+
value: 26.99
|
48 |
+
- name: BERTScore (Question Generation)
|
49 |
+
type: bertscore_question_generation
|
50 |
+
value: 90.61
|
51 |
+
- name: MoverScore (Question Generation)
|
52 |
+
type: moverscore_question_generation
|
53 |
+
value: 64.75
|
54 |
+
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer))
|
55 |
+
type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer
|
56 |
+
value: 93.31
|
57 |
+
- name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer))
|
58 |
+
type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer
|
59 |
+
value: 93.99
|
60 |
+
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer))
|
61 |
+
type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer
|
62 |
+
value: 92.65
|
63 |
+
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer))
|
64 |
+
type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer
|
65 |
+
value: 64.59
|
66 |
+
- name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer))
|
67 |
+
type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer
|
68 |
+
value: 65.57
|
69 |
+
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer))
|
70 |
+
type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer
|
71 |
+
value: 63.7
|
72 |
+
- name: BLEU4 (Answer Extraction)
|
73 |
+
type: bleu4_answer_extraction
|
74 |
+
value: 35.6
|
75 |
+
- name: ROUGE-L (Answer Extraction)
|
76 |
+
type: rouge_l_answer_extraction
|
77 |
+
value: 68.47
|
78 |
+
- name: METEOR (Answer Extraction)
|
79 |
+
type: meteor_answer_extraction
|
80 |
+
value: 42.76
|
81 |
+
- name: BERTScore (Answer Extraction)
|
82 |
+
type: bertscore_answer_extraction
|
83 |
+
value: 91.28
|
84 |
+
- name: MoverScore (Answer Extraction)
|
85 |
+
type: moverscore_answer_extraction
|
86 |
+
value: 81.31
|
87 |
+
- name: AnswerF1Score (Answer Extraction)
|
88 |
+
type: answer_f1_score__answer_extraction
|
89 |
+
value: 68.88
|
90 |
+
- name: AnswerExactMatch (Answer Extraction)
|
91 |
+
type: answer_exact_match_answer_extraction
|
92 |
+
value: 57.39
|
93 |
+
---
|
94 |
+
|
95 |
+
# Model Card of `lmqg/flan-t5-base-squad-qg-ae`
|
96 |
+
This model is fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) for question generation and answer extraction jointly on the [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
|
97 |
+
|
98 |
+
|
99 |
+
### Overview
|
100 |
+
- **Language model:** [google/flan-t5-base](https://huggingface.co/google/flan-t5-base)
|
101 |
+
- **Language:** en
|
102 |
+
- **Training data:** [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (default)
|
103 |
+
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
|
104 |
+
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
|
105 |
+
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
|
106 |
+
|
107 |
+
### Usage
|
108 |
+
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
|
109 |
+
```python
|
110 |
+
from lmqg import TransformersQG
|
111 |
+
|
112 |
+
# initialize model
|
113 |
+
model = TransformersQG(language="en", model="lmqg/flan-t5-base-squad-qg-ae")
|
114 |
+
|
115 |
+
# model prediction
|
116 |
+
question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
|
117 |
+
|
118 |
+
```
|
119 |
+
|
120 |
+
- With `transformers`
|
121 |
+
```python
|
122 |
+
from transformers import pipeline
|
123 |
+
|
124 |
+
pipe = pipeline("text2text-generation", "lmqg/flan-t5-base-squad-qg-ae")
|
125 |
+
|
126 |
+
# answer extraction
|
127 |
+
answer = pipe("generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
|
128 |
+
|
129 |
+
# question generation
|
130 |
+
question = pipe("extract answers: <hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress.")
|
131 |
+
|
132 |
+
```
|
133 |
+
|
134 |
+
## Evaluation
|
135 |
+
|
136 |
+
|
137 |
+
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/flan-t5-base-squad-qg-ae/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_squad.default.json)
|
138 |
+
|
139 |
+
| | Score | Type | Dataset |
|
140 |
+
|:-----------|--------:|:--------|:---------------------------------------------------------------|
|
141 |
+
| BERTScore | 90.61 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
142 |
+
| Bleu_1 | 58.99 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
143 |
+
| Bleu_2 | 42.92 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
144 |
+
| Bleu_3 | 33.3 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
145 |
+
| Bleu_4 | 26.43 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
146 |
+
| METEOR | 26.99 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
147 |
+
| MoverScore | 64.75 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
148 |
+
| ROUGE_L | 53.37 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
149 |
+
|
150 |
+
|
151 |
+
- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/flan-t5-base-squad-qg-ae/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_squad.default.json)
|
152 |
+
|
153 |
+
| | Score | Type | Dataset |
|
154 |
+
|:--------------------------------|--------:|:--------|:---------------------------------------------------------------|
|
155 |
+
| QAAlignedF1Score (BERTScore) | 93.31 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
156 |
+
| QAAlignedF1Score (MoverScore) | 64.59 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
157 |
+
| QAAlignedPrecision (BERTScore) | 92.65 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
158 |
+
| QAAlignedPrecision (MoverScore) | 63.7 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
159 |
+
| QAAlignedRecall (BERTScore) | 93.99 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
160 |
+
| QAAlignedRecall (MoverScore) | 65.57 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
161 |
+
|
162 |
+
|
163 |
+
- ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/flan-t5-base-squad-qg-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_squad.default.json)
|
164 |
+
|
165 |
+
| | Score | Type | Dataset |
|
166 |
+
|:-----------------|--------:|:--------|:---------------------------------------------------------------|
|
167 |
+
| AnswerExactMatch | 57.39 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
168 |
+
| AnswerF1Score | 68.88 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
169 |
+
| BERTScore | 91.28 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
170 |
+
| Bleu_1 | 49.4 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
171 |
+
| Bleu_2 | 44.53 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
172 |
+
| Bleu_3 | 39.73 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
173 |
+
| Bleu_4 | 35.6 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
174 |
+
| METEOR | 42.76 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
175 |
+
| MoverScore | 81.31 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
176 |
+
| ROUGE_L | 68.47 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
## Training hyperparameters
|
181 |
+
|
182 |
+
The following hyperparameters were used during fine-tuning:
|
183 |
+
- dataset_path: lmqg/qg_squad
|
184 |
+
- dataset_name: default
|
185 |
+
- input_types: ['paragraph_answer', 'paragraph_sentence']
|
186 |
+
- output_types: ['question', 'answer']
|
187 |
+
- prefix_types: ['qg', 'ae']
|
188 |
+
- model: google/flan-t5-base
|
189 |
+
- max_length: 512
|
190 |
+
- max_length_output: 32
|
191 |
+
- epoch: 7
|
192 |
+
- batch: 8
|
193 |
+
- lr: 0.0001
|
194 |
+
- fp16: False
|
195 |
+
- random_seed: 1
|
196 |
+
- gradient_accumulation_steps: 16
|
197 |
+
- label_smoothing: 0.15
|
198 |
+
|
199 |
+
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/flan-t5-base-squad-qg-ae/raw/main/trainer_config.json).
|
200 |
+
|
201 |
+
## Citation
|
202 |
+
```
|
203 |
+
@inproceedings{ushio-etal-2022-generative,
|
204 |
+
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
|
205 |
+
author = "Ushio, Asahi and
|
206 |
+
Alva-Manchego, Fernando and
|
207 |
+
Camacho-Collados, Jose",
|
208 |
+
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
|
209 |
+
month = dec,
|
210 |
+
year = "2022",
|
211 |
+
address = "Abu Dhabi, U.A.E.",
|
212 |
+
publisher = "Association for Computational Linguistics",
|
213 |
+
}
|
214 |
+
|
215 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<hl>": 32100
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "lmqg_output/flan-t5-base-squad-qg-ae/model_eszyci/epoch_2",
|
3 |
+
"add_prefix": true,
|
4 |
+
"architectures": [
|
5 |
+
"T5ForConditionalGeneration"
|
6 |
+
],
|
7 |
+
"d_ff": 2048,
|
8 |
+
"d_kv": 64,
|
9 |
+
"d_model": 768,
|
10 |
+
"decoder_start_token_id": 0,
|
11 |
+
"dense_act_fn": "gelu_new",
|
12 |
+
"dropout_rate": 0.1,
|
13 |
+
"eos_token_id": 1,
|
14 |
+
"feed_forward_proj": "gated-gelu",
|
15 |
+
"initializer_factor": 1.0,
|
16 |
+
"is_encoder_decoder": true,
|
17 |
+
"is_gated_act": true,
|
18 |
+
"layer_norm_epsilon": 1e-06,
|
19 |
+
"model_type": "t5",
|
20 |
+
"n_positions": 512,
|
21 |
+
"num_decoder_layers": 12,
|
22 |
+
"num_heads": 12,
|
23 |
+
"num_layers": 12,
|
24 |
+
"output_past": true,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"relative_attention_max_distance": 128,
|
27 |
+
"relative_attention_num_buckets": 32,
|
28 |
+
"task_specific_params": {
|
29 |
+
"summarization": {
|
30 |
+
"early_stopping": true,
|
31 |
+
"length_penalty": 2.0,
|
32 |
+
"max_length": 200,
|
33 |
+
"min_length": 30,
|
34 |
+
"no_repeat_ngram_size": 3,
|
35 |
+
"num_beams": 4,
|
36 |
+
"prefix": "summarize: "
|
37 |
+
},
|
38 |
+
"translation_en_to_de": {
|
39 |
+
"early_stopping": true,
|
40 |
+
"max_length": 300,
|
41 |
+
"num_beams": 4,
|
42 |
+
"prefix": "translate English to German: "
|
43 |
+
},
|
44 |
+
"translation_en_to_fr": {
|
45 |
+
"early_stopping": true,
|
46 |
+
"max_length": 300,
|
47 |
+
"num_beams": 4,
|
48 |
+
"prefix": "translate English to French: "
|
49 |
+
},
|
50 |
+
"translation_en_to_ro": {
|
51 |
+
"early_stopping": true,
|
52 |
+
"max_length": 300,
|
53 |
+
"num_beams": 4,
|
54 |
+
"prefix": "translate English to Romanian: "
|
55 |
+
}
|
56 |
+
},
|
57 |
+
"tie_word_embeddings": false,
|
58 |
+
"torch_dtype": "float32",
|
59 |
+
"transformers_version": "4.26.1",
|
60 |
+
"use_cache": true,
|
61 |
+
"vocab_size": 32101
|
62 |
+
}
|
eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_squad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"test": {"QAAlignedF1Score (BERTScore)": 0.9331200231801412, "QAAlignedRecall (BERTScore)": 0.9399491642028229, "QAAlignedPrecision (BERTScore)": 0.926485238401098, "QAAlignedF1Score (MoverScore)": 0.6458807796294435, "QAAlignedRecall (MoverScore)": 0.6557030069442409, "QAAlignedPrecision (MoverScore)": 0.6369852357032981, "Bleu_1": 0.2081753330467536, "Bleu_2": 0.11849501493018352, "Bleu_3": 0.0581976187585514, "Bleu_4": 0.032446793938693604, "METEOR": 0.29408615528616006, "ROUGE_L": 0.22568047157912255, "BERTScore": 0.8810365926635368, "MoverScore": 0.6050701891062961}, "validation": {"QAAlignedF1Score (BERTScore)": 0.9318819882475717, "QAAlignedRecall (BERTScore)": 0.9375346887392281, "QAAlignedPrecision (BERTScore)": 0.9263555201099526, "QAAlignedF1Score (MoverScore)": 0.6470905584208508, "QAAlignedRecall (MoverScore)": 0.6539960981502014, "QAAlignedPrecision (MoverScore)": 0.6406423809368123, "Bleu_1": 0.22408145313527597, "Bleu_2": 0.131635084701984, "Bleu_3": 0.0706195936829256, "Bleu_4": 0.042252626422146625, "METEOR": 0.3090637155385741, "ROUGE_L": 0.24523271947693276, "BERTScore": 0.8847284212917537, "MoverScore": 0.6108109436054909}}
|
eval/metric.first.answer.paragraph_answer.question.lmqg_qg_squad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.5397077587981022, "Bleu_2": 0.3894683483328977, "Bleu_3": 0.3029957720929125, "Bleu_4": 0.24295241492219558}, "test": {"Bleu_1": 0.5173878693653963, "Bleu_2": 0.3640896598763924, "Bleu_3": 0.2774614821234408, "Bleu_4": 0.21762123512998938}}
|
eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_squad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.44546311059573046, "Bleu_2": 0.400085025119539, "Bleu_3": 0.3562573590762554, "Bleu_4": 0.31804445342030635, "METEOR": 0.402854225669429, "ROUGE_L": 0.6477476611359576, "BERTScore": 0.9095451256973967, "MoverScore": 0.782323161023676, "AnswerF1Score": 65.31658191133377, "AnswerExactMatch": 50.98391674550615}, "test": {"Bleu_1": 0.4939809206541397, "Bleu_2": 0.44534045742642175, "Bleu_3": 0.39731828130525787, "Bleu_4": 0.3560375929213104, "METEOR": 0.427644668930749, "ROUGE_L": 0.6847213583359633, "BERTScore": 0.9127563637716356, "MoverScore": 0.8130886946726135, "AnswerF1Score": 68.87903988763182, "AnswerExactMatch": 57.388229350846174}}
|
eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_squad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.5866039654295807, "Bleu_2": 0.4320782313242005, "Bleu_3": 0.3407646707956189, "Bleu_4": 0.2761550309866141, "METEOR": 0.2785980684038628, "ROUGE_L": 0.5474548141796508, "BERTScore": 0.9073520105055275, "MoverScore": 0.6597816341847417}, "test": {"Bleu_1": 0.5898626250574781, "Bleu_2": 0.42924329644204656, "Bleu_3": 0.3329598075433257, "Bleu_4": 0.26434686451332623, "METEOR": 0.2698711351472531, "ROUGE_L": 0.5336552955964131, "BERTScore": 0.9061460578147719, "MoverScore": 0.6474941467848804}}
|
eval/samples.test.hyp.paragraph.questions_answers.lmqg_qg_squad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_squad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.test.hyp.paragraph_sentence.answer.lmqg_qg_squad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.validation.hyp.paragraph.questions_answers.lmqg_qg_squad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_squad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.validation.hyp.paragraph_sentence.answer.lmqg_qg_squad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"decoder_start_token_id": 0,
|
4 |
+
"eos_token_id": 1,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.26.1"
|
7 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af393bb97e4ab63b2ada8b75af4683c2cad1bd9d532e509bbd3fa3259af9142c
|
3 |
+
size 990242997
|
special_tokens_map.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<hl>"
|
4 |
+
],
|
5 |
+
"eos_token": "</s>",
|
6 |
+
"pad_token": "<pad>",
|
7 |
+
"unk_token": "<unk>"
|
8 |
+
}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86
|
3 |
+
size 791656
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<extra_id_0>",
|
4 |
+
"<extra_id_1>",
|
5 |
+
"<extra_id_2>",
|
6 |
+
"<extra_id_3>",
|
7 |
+
"<extra_id_4>",
|
8 |
+
"<extra_id_5>",
|
9 |
+
"<extra_id_6>",
|
10 |
+
"<extra_id_7>",
|
11 |
+
"<extra_id_8>",
|
12 |
+
"<extra_id_9>",
|
13 |
+
"<extra_id_10>",
|
14 |
+
"<extra_id_11>",
|
15 |
+
"<extra_id_12>",
|
16 |
+
"<extra_id_13>",
|
17 |
+
"<extra_id_14>",
|
18 |
+
"<extra_id_15>",
|
19 |
+
"<extra_id_16>",
|
20 |
+
"<extra_id_17>",
|
21 |
+
"<extra_id_18>",
|
22 |
+
"<extra_id_19>",
|
23 |
+
"<extra_id_20>",
|
24 |
+
"<extra_id_21>",
|
25 |
+
"<extra_id_22>",
|
26 |
+
"<extra_id_23>",
|
27 |
+
"<extra_id_24>",
|
28 |
+
"<extra_id_25>",
|
29 |
+
"<extra_id_26>",
|
30 |
+
"<extra_id_27>",
|
31 |
+
"<extra_id_28>",
|
32 |
+
"<extra_id_29>",
|
33 |
+
"<extra_id_30>",
|
34 |
+
"<extra_id_31>",
|
35 |
+
"<extra_id_32>",
|
36 |
+
"<extra_id_33>",
|
37 |
+
"<extra_id_34>",
|
38 |
+
"<extra_id_35>",
|
39 |
+
"<extra_id_36>",
|
40 |
+
"<extra_id_37>",
|
41 |
+
"<extra_id_38>",
|
42 |
+
"<extra_id_39>",
|
43 |
+
"<extra_id_40>",
|
44 |
+
"<extra_id_41>",
|
45 |
+
"<extra_id_42>",
|
46 |
+
"<extra_id_43>",
|
47 |
+
"<extra_id_44>",
|
48 |
+
"<extra_id_45>",
|
49 |
+
"<extra_id_46>",
|
50 |
+
"<extra_id_47>",
|
51 |
+
"<extra_id_48>",
|
52 |
+
"<extra_id_49>",
|
53 |
+
"<extra_id_50>",
|
54 |
+
"<extra_id_51>",
|
55 |
+
"<extra_id_52>",
|
56 |
+
"<extra_id_53>",
|
57 |
+
"<extra_id_54>",
|
58 |
+
"<extra_id_55>",
|
59 |
+
"<extra_id_56>",
|
60 |
+
"<extra_id_57>",
|
61 |
+
"<extra_id_58>",
|
62 |
+
"<extra_id_59>",
|
63 |
+
"<extra_id_60>",
|
64 |
+
"<extra_id_61>",
|
65 |
+
"<extra_id_62>",
|
66 |
+
"<extra_id_63>",
|
67 |
+
"<extra_id_64>",
|
68 |
+
"<extra_id_65>",
|
69 |
+
"<extra_id_66>",
|
70 |
+
"<extra_id_67>",
|
71 |
+
"<extra_id_68>",
|
72 |
+
"<extra_id_69>",
|
73 |
+
"<extra_id_70>",
|
74 |
+
"<extra_id_71>",
|
75 |
+
"<extra_id_72>",
|
76 |
+
"<extra_id_73>",
|
77 |
+
"<extra_id_74>",
|
78 |
+
"<extra_id_75>",
|
79 |
+
"<extra_id_76>",
|
80 |
+
"<extra_id_77>",
|
81 |
+
"<extra_id_78>",
|
82 |
+
"<extra_id_79>",
|
83 |
+
"<extra_id_80>",
|
84 |
+
"<extra_id_81>",
|
85 |
+
"<extra_id_82>",
|
86 |
+
"<extra_id_83>",
|
87 |
+
"<extra_id_84>",
|
88 |
+
"<extra_id_85>",
|
89 |
+
"<extra_id_86>",
|
90 |
+
"<extra_id_87>",
|
91 |
+
"<extra_id_88>",
|
92 |
+
"<extra_id_89>",
|
93 |
+
"<extra_id_90>",
|
94 |
+
"<extra_id_91>",
|
95 |
+
"<extra_id_92>",
|
96 |
+
"<extra_id_93>",
|
97 |
+
"<extra_id_94>",
|
98 |
+
"<extra_id_95>",
|
99 |
+
"<extra_id_96>",
|
100 |
+
"<extra_id_97>",
|
101 |
+
"<extra_id_98>",
|
102 |
+
"<extra_id_99>"
|
103 |
+
],
|
104 |
+
"eos_token": "</s>",
|
105 |
+
"extra_ids": 100,
|
106 |
+
"model_max_length": 512,
|
107 |
+
"name_or_path": "lmqg_output/flan-t5-base-squad-qg-ae/model_eszyci/epoch_2",
|
108 |
+
"pad_token": "<pad>",
|
109 |
+
"sp_model_kwargs": {},
|
110 |
+
"special_tokens_map_file": "/home/younes_huggingface_co/.cache/huggingface/hub/models--google--t5-v1_1-base/snapshots/650d7745bf1e502d6949b22cc19155cd656d3d4e/special_tokens_map.json",
|
111 |
+
"tokenizer_class": "T5Tokenizer",
|
112 |
+
"unk_token": "<unk>"
|
113 |
+
}
|
trainer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"dataset_path": "lmqg/qg_squad", "dataset_name": "default", "input_types": ["paragraph_answer", "paragraph_sentence"], "output_types": ["question", "answer"], "prefix_types": ["qg", "ae"], "model": "google/flan-t5-base", "max_length": 512, "max_length_output": 32, "epoch": 7, "batch": 8, "lr": 0.0001, "fp16": false, "random_seed": 1, "gradient_accumulation_steps": 16, "label_smoothing": 0.15}
|