commit files to HF hub
Browse files- README.md +136 -0
- eval/metric.first.answer.paragraph_answer.question.lmqg_qg_zhquad.default.json +1 -0
- eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_zhquad.default.json +1 -0
- eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_zhquad.default.txt +0 -0
- eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_zhquad.default.txt +0 -0
README.md
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
license: cc-by-4.0
|
4 |
+
metrics:
|
5 |
+
- bleu4
|
6 |
+
- meteor
|
7 |
+
- rouge-l
|
8 |
+
- bertscore
|
9 |
+
- moverscore
|
10 |
+
language: zh
|
11 |
+
datasets:
|
12 |
+
- lmqg/qg_zhquad
|
13 |
+
pipeline_tag: text2text-generation
|
14 |
+
tags:
|
15 |
+
- question generation
|
16 |
+
widget:
|
17 |
+
- text: "南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近<hl> 南安普敦中央 <hl>火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。"
|
18 |
+
example_title: "Question Generation Example 1"
|
19 |
+
- text: "芝加哥大学的<hl> 1960—61 <hl>集团理论年汇集了Daniel Gorenstein、John G. Thompson和Walter Feit等团体理论家,奠定了一个合作的基础,借助于其他众多数学家的输入,1982中对所有有限的简单群进行了分类。这个项目的规模超过了以往的数学研究,无论是证明的长度还是研究人员的数量。目前正在进行研究,以简化这一分类的证明。如今,群论仍然是一个非常活跃的数学分支,影响着许多其他领域"
|
20 |
+
example_title: "Question Generation Example 2"
|
21 |
+
model-index:
|
22 |
+
- name: lmqg/mt5-base-zhquad-qg
|
23 |
+
results:
|
24 |
+
- task:
|
25 |
+
name: Text2text Generation
|
26 |
+
type: text2text-generation
|
27 |
+
dataset:
|
28 |
+
name: lmqg/qg_zhquad
|
29 |
+
type: default
|
30 |
+
args: default
|
31 |
+
metrics:
|
32 |
+
- name: BLEU4 (Question Generation)
|
33 |
+
type: bleu4_question_generation
|
34 |
+
value: 14.73
|
35 |
+
- name: ROUGE-L (Question Generation)
|
36 |
+
type: rouge_l_question_generation
|
37 |
+
value: 34.72
|
38 |
+
- name: METEOR (Question Generation)
|
39 |
+
type: meteor_question_generation
|
40 |
+
value: 23.92
|
41 |
+
- name: BERTScore (Question Generation)
|
42 |
+
type: bertscore_question_generation
|
43 |
+
value: 77.38
|
44 |
+
- name: MoverScore (Question Generation)
|
45 |
+
type: moverscore_question_generation
|
46 |
+
value: 57.5
|
47 |
+
---
|
48 |
+
|
49 |
+
# Model Card of `lmqg/mt5-base-zhquad-qg`
|
50 |
+
This model is fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) for question generation task on the [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
|
51 |
+
|
52 |
+
|
53 |
+
### Overview
|
54 |
+
- **Language model:** [google/mt5-base](https://huggingface.co/google/mt5-base)
|
55 |
+
- **Language:** zh
|
56 |
+
- **Training data:** [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) (default)
|
57 |
+
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
|
58 |
+
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
|
59 |
+
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
|
60 |
+
|
61 |
+
### Usage
|
62 |
+
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
|
63 |
+
```python
|
64 |
+
from lmqg import TransformersQG
|
65 |
+
|
66 |
+
# initialize model
|
67 |
+
model = TransformersQG(language="zh", model="lmqg/mt5-base-zhquad-qg")
|
68 |
+
|
69 |
+
# model prediction
|
70 |
+
questions = model.generate_q(list_context="南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近南安普敦中央火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。", list_answer="南安普敦中央")
|
71 |
+
|
72 |
+
```
|
73 |
+
|
74 |
+
- With `transformers`
|
75 |
+
```python
|
76 |
+
from transformers import pipeline
|
77 |
+
|
78 |
+
pipe = pipeline("text2text-generation", "lmqg/mt5-base-zhquad-qg")
|
79 |
+
output = pipe("南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近<hl> 南安普敦中央 <hl>火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。")
|
80 |
+
|
81 |
+
```
|
82 |
+
|
83 |
+
## Evaluation
|
84 |
+
|
85 |
+
|
86 |
+
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-zhquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_zhquad.default.json)
|
87 |
+
|
88 |
+
| | Score | Type | Dataset |
|
89 |
+
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
|
90 |
+
| BERTScore | 77.38 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
|
91 |
+
| Bleu_1 | 37 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
|
92 |
+
| Bleu_2 | 25.9 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
|
93 |
+
| Bleu_3 | 19.25 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
|
94 |
+
| Bleu_4 | 14.73 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
|
95 |
+
| METEOR | 23.92 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
|
96 |
+
| MoverScore | 57.5 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
|
97 |
+
| ROUGE_L | 34.72 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
## Training hyperparameters
|
102 |
+
|
103 |
+
The following hyperparameters were used during fine-tuning:
|
104 |
+
- dataset_path: lmqg/qg_zhquad
|
105 |
+
- dataset_name: default
|
106 |
+
- input_types: paragraph_answer
|
107 |
+
- output_types: question
|
108 |
+
- prefix_types: None
|
109 |
+
- model: google/mt5-base
|
110 |
+
- max_length: 512
|
111 |
+
- max_length_output: 32
|
112 |
+
- epoch: 16
|
113 |
+
- batch: 16
|
114 |
+
- lr: 0.0001
|
115 |
+
- fp16: False
|
116 |
+
- random_seed: 1
|
117 |
+
- gradient_accumulation_steps: 4
|
118 |
+
- label_smoothing: 0.15
|
119 |
+
|
120 |
+
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-base-zhquad-qg/raw/main/trainer_config.json).
|
121 |
+
|
122 |
+
## Citation
|
123 |
+
```
|
124 |
+
@inproceedings{ushio-etal-2022-generative,
|
125 |
+
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
|
126 |
+
author = "Ushio, Asahi and
|
127 |
+
Alva-Manchego, Fernando and
|
128 |
+
Camacho-Collados, Jose",
|
129 |
+
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
|
130 |
+
month = dec,
|
131 |
+
year = "2022",
|
132 |
+
address = "Abu Dhabi, U.A.E.",
|
133 |
+
publisher = "Association for Computational Linguistics",
|
134 |
+
}
|
135 |
+
|
136 |
+
```
|
eval/metric.first.answer.paragraph_answer.question.lmqg_qg_zhquad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.3385168312250303, "Bleu_2": 0.2238112683506814, "Bleu_3": 0.1588321847167366, "Bleu_4": 0.11709569052083327}, "test": {"Bleu_1": 0.36719393835508957, "Bleu_2": 0.2572239905127818, "Bleu_3": 0.1912911241757621, "Bleu_4": 0.14644319098806993}}
|
eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_zhquad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.35851275727805954, "Bleu_2": 0.23893718120348878, "Bleu_3": 0.17066599689049272, "Bleu_4": 0.12650213237345015, "METEOR": 0.22585721479843068, "ROUGE_L": 0.3217720186623046, "BERTScore": 0.7550948901709557, "MoverScore": 0.5647446105087129}, "test": {"Bleu_1": 0.3700068673383822, "Bleu_2": 0.2589815349971843, "Bleu_3": 0.19249527438146838, "Bleu_4": 0.14734334732205598, "METEOR": 0.2392320688529274, "ROUGE_L": 0.34722697451954365, "BERTScore": 0.773827308392915, "MoverScore": 0.5750200359829101}}
|
eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_zhquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_zhquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|