File size: 7,880 Bytes
c07208a
 
 
 
 
 
 
 
 
d94f733
c07208a
 
 
 
 
 
d94f733
c07208a
d94f733
c07208a
d94f733
c07208a
 
d94f733
c07208a
 
 
 
 
 
 
 
 
9ef46e0
 
07dccbc
9ef46e0
 
07dccbc
9ef46e0
 
07dccbc
9ef46e0
 
07dccbc
9ef46e0
 
07dccbc
aa2f64a
 
07dccbc
aa2f64a
 
07dccbc
aa2f64a
 
07dccbc
aa2f64a
 
07dccbc
aa2f64a
 
07dccbc
aa2f64a
 
07dccbc
c07208a
 
d94f733
07dccbc
c07208a
 
 
 
d94f733
c07208a
 
 
7ab4ea8
c07208a
 
7ab4ea8
c07208a
7ab4ea8
07dccbc
7ab4ea8
d94f733
07dccbc
7ab4ea8
d94f733
7ab4ea8
 
c07208a
7ab4ea8
 
 
07dccbc
d94f733
 
11296b6
c07208a
 
07dccbc
c07208a
 
d94f733
c07208a
07dccbc
 
 
 
 
 
 
 
 
 
c07208a
 
d94f733
ab88802
07dccbc
 
 
 
 
 
 
 
ab88802
c07208a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d94f733
c07208a
 
7ab4ea8
11296b6
7ab4ea8
11296b6
7ab4ea8
11296b6
 
 
 
 
 
 
 
7ab4ea8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: de
datasets:
- lmqg/qg_dequad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen, andernfalls <hl> wird die Signalübertragung stark gedämpft. <hl>"
  example_title: "Question Generation Example 1" 
- text: "das erste weltweit errichtete Hermann Brehmer <hl> 1855 <hl> im niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen)."
  example_title: "Question Generation Example 2" 
- text: "Er muss Zyperngrieche sein und wird direkt für <hl> fünf Jahre <hl> gewählt (Art. 43 Abs. 1 der Verfassung) und verfügt über weitreichende Exekutivkompetenzen."
  example_title: "Question Generation Example 3" 
model-index:
- name: lmqg/mt5-small-dequad-qg
  results:
  - task:
      name: Text2text Generation
      type: text2text-generation
    dataset:
      name: lmqg/qg_dequad
      type: default
      args: default
    metrics:
    - name: BLEU4 (Question Generation)
      type: bleu4_question_generation
      value: 0.43
    - name: ROUGE-L (Question Generation)
      type: rouge_l_question_generation
      value: 10.08
    - name: METEOR (Question Generation)
      type: meteor_question_generation
      value: 11.47
    - name: BERTScore (Question Generation)
      type: bertscore_question_generation
      value: 79.9
    - name: MoverScore (Question Generation)
      type: moverscore_question_generation
      value: 54.64
    - name: QAAlignedF1Score-BERTScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_f1_score_bertscore_question_answer_generation_gold_answer
      value: 90.55
    - name: QAAlignedRecall-BERTScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_recall_bertscore_question_answer_generation_gold_answer
      value: 90.51
    - name: QAAlignedPrecision-BERTScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_precision_bertscore_question_answer_generation_gold_answer
      value: 90.59
    - name: QAAlignedF1Score-MoverScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_f1_score_moverscore_question_answer_generation_gold_answer
      value: 64.33
    - name: QAAlignedRecall-MoverScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_recall_moverscore_question_answer_generation_gold_answer
      value: 64.29
    - name: QAAlignedPrecision-MoverScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_precision_moverscore_question_answer_generation_gold_answer
      value: 64.37
---

# Model Card of `lmqg/mt5-small-dequad-qg`
This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation task on the [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).


### Overview
- **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small)   
- **Language:** de  
- **Training data:** [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)

### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="de", model="lmqg/mt5-small-dequad-qg")

# model prediction
questions = model.generate_q(list_context="das erste weltweit errichtete Hermann Brehmer 1855 im niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen).", list_answer="1855")

```

- With `transformers`
```python
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-small-dequad-qg")
output = pipe("Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen, andernfalls <hl> wird die Signalübertragung stark gedämpft. <hl>")

```

## Evaluation


- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-dequad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_dequad.default.json) 

|            |   Score | Type    | Dataset                                                          |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore  |   79.9  | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| Bleu_1     |   10.18 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| Bleu_2     |    4.02 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| Bleu_3     |    1.6  | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| Bleu_4     |    0.43 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| METEOR     |   11.47 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| MoverScore |   54.64 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| ROUGE_L    |   10.08 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |


- ***Metric (Question & Answer Generation)***: QAG metrics are computed with *the gold answer* and generated question on it for this model, as the model cannot provide an answer. [raw metric file](https://huggingface.co/lmqg/mt5-small-dequad-qg/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_dequad.default.json)

|                                 |   Score | Type    | Dataset                                                          |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore)    |   90.55 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedF1Score (MoverScore)   |   64.33 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedPrecision (BERTScore)  |   90.59 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedPrecision (MoverScore) |   64.37 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedRecall (BERTScore)     |   90.51 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedRecall (MoverScore)    |   64.29 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |



## Training hyperparameters

The following hyperparameters were used during fine-tuning:
 - dataset_path: lmqg/qg_dequad
 - dataset_name: default
 - input_types: ['paragraph_answer']
 - output_types: ['question']
 - prefix_types: None
 - model: google/mt5-small
 - max_length: 512
 - max_length_output: 32
 - epoch: 11
 - batch: 16
 - lr: 0.001
 - fp16: False
 - random_seed: 1
 - gradient_accumulation_steps: 4
 - label_smoothing: 0.15

The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-dequad-qg/raw/main/trainer_config.json).

## Citation
```
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```