bartowski commited on
Commit
59dc682
0 Parent(s):

Duplicate from bartowski/Qwen2-0.5B-Instruct-GGUF

Browse files
.gitattributes ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Qwen2-0.5B-Instruct-IQ3_M.gguf filter=lfs diff=lfs merge=lfs -text
37
+ Qwen2-0.5B-Instruct-IQ4_XS.gguf filter=lfs diff=lfs merge=lfs -text
38
+ Qwen2-0.5B-Instruct-Q3_K_L.gguf filter=lfs diff=lfs merge=lfs -text
39
+ Qwen2-0.5B-Instruct-Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
40
+ Qwen2-0.5B-Instruct-Q4_K_S.gguf filter=lfs diff=lfs merge=lfs -text
41
+ Qwen2-0.5B-Instruct-Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
42
+ Qwen2-0.5B-Instruct-Q5_K_S.gguf filter=lfs diff=lfs merge=lfs -text
43
+ Qwen2-0.5B-Instruct-Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
44
+ Qwen2-0.5B-Instruct-Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
45
+ Qwen2-0.5B-Instruct-f32.gguf filter=lfs diff=lfs merge=lfs -text
Qwen2-0.5B-Instruct-IQ3_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae072270d44618ff1ce9c53ebdeb56119a90587a4685f315332b62eedc0981fc
3
+ size 342749632
Qwen2-0.5B-Instruct-IQ4_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efb03512acae03810fd06c986e04ff38cd1742fad6f7150ab61bfc3555e644b1
3
+ size 349399744
Qwen2-0.5B-Instruct-Q3_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8dab29d58a8112ec372e9ed85e4601d97a1fcedfaf8b1369d3bcd1042ef9d02
3
+ size 369355456
Qwen2-0.5B-Instruct-Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca7490f00135c413e0827cbc27333985f937188c19caa2321365644211a3ed4a
3
+ size 397805248
Qwen2-0.5B-Instruct-Q4_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6a91f9383afcd21293f7007890dd03c43580d18fead7534eeca1cc08c301d8f
3
+ size 385469120
Qwen2-0.5B-Instruct-Q5_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73d05555aa5c4571391be66ea316bfc2a5f5a16bc346271a9a2d76756799c383
3
+ size 420083392
Qwen2-0.5B-Instruct-Q5_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c981c41e61ab9ad1615dd12729a3b0e15edaa9d17ac94c13744b134b9ba9a8b9
3
+ size 412707520
Qwen2-0.5B-Instruct-Q6_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92fd464a0d59b39c5cad21fd5b0ada49abebcd58eef726bebec082aea01530f3
3
+ size 505733824
Qwen2-0.5B-Instruct-Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a07bd33b0e52babc1083e97d9bb6018197d7af25697552cc4d0b751e035158ff
3
+ size 531065536
Qwen2-0.5B-Instruct-f32.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5359f04e5c466b806ce61dc1f5abc74c293906d0281b1feafa458e84fa431b6a
3
+ size 1982076320
Qwen2-0.5B-Instruct.imatrix ADDED
Binary file (989 kB). View file
 
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - chat
8
+ quantized_by: bartowski
9
+ ---
10
+
11
+ ## Llamacpp imatrix Quantizations of Qwen2-0.5B-Instruct
12
+
13
+ Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3086">b3086</a> for quantization.
14
+
15
+ Original model: https://huggingface.co/Qwen/Qwen2-0.5B-Instruct
16
+
17
+ All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8)
18
+
19
+ ## Prompt format
20
+
21
+ ```
22
+ <|im_start|>system
23
+ {system_prompt}<|im_end|>
24
+ <|im_start|>user
25
+ {prompt}<|im_end|>
26
+ <|im_start|>assistant
27
+
28
+ ```
29
+
30
+ ## Download a file (not the whole branch) from below:
31
+
32
+ | Filename | Quant type | File Size | Description |
33
+ | -------- | ---------- | --------- | ----------- |
34
+ | [Qwen2-0.5B-Instruct-Q8_0.gguf](https://huggingface.co/bartowski/Qwen2-0.5B-Instruct-GGUF/blob/main/Qwen2-0.5B-Instruct-Q8_0.gguf) | Q8_0 | .53GB | Extremely high quality, generally unneeded but max available quant. |
35
+ | [Qwen2-0.5B-Instruct-Q6_K.gguf](https://huggingface.co/bartowski/Qwen2-0.5B-Instruct-GGUF/blob/main/Qwen2-0.5B-Instruct-Q6_K.gguf) | Q6_K | .50GB | Very high quality, near perfect, *recommended*. |
36
+ | [Qwen2-0.5B-Instruct-Q5_K_M.gguf](https://huggingface.co/bartowski/Qwen2-0.5B-Instruct-GGUF/blob/main/Qwen2-0.5B-Instruct-Q5_K_M.gguf) | Q5_K_M | .42GB | High quality, *recommended*. |
37
+ | [Qwen2-0.5B-Instruct-Q5_K_S.gguf](https://huggingface.co/bartowski/Qwen2-0.5B-Instruct-GGUF/blob/main/Qwen2-0.5B-Instruct-Q5_K_S.gguf) | Q5_K_S | .41GB | High quality, *recommended*. |
38
+ | [Qwen2-0.5B-Instruct-Q4_K_M.gguf](https://huggingface.co/bartowski/Qwen2-0.5B-Instruct-GGUF/blob/main/Qwen2-0.5B-Instruct-Q4_K_M.gguf) | Q4_K_M | .39GB | Good quality, uses about 4.83 bits per weight, *recommended*. |
39
+ | [Qwen2-0.5B-Instruct-Q4_K_S.gguf](https://huggingface.co/bartowski/Qwen2-0.5B-Instruct-GGUF/blob/main/Qwen2-0.5B-Instruct-Q4_K_S.gguf) | Q4_K_S | .38GB | Slightly lower quality with more space savings, *recommended*. |
40
+ | [Qwen2-0.5B-Instruct-IQ4_XS.gguf](https://huggingface.co/bartowski/Qwen2-0.5B-Instruct-GGUF/blob/main/Qwen2-0.5B-Instruct-IQ4_XS.gguf) | IQ4_XS | .34GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
41
+ | [Qwen2-0.5B-Instruct-Q3_K_L.gguf](https://huggingface.co/bartowski/Qwen2-0.5B-Instruct-GGUF/blob/main/Qwen2-0.5B-Instruct-Q3_K_L.gguf) | Q3_K_L | .36GB | Lower quality but usable, good for low RAM availability. |
42
+ | [Qwen2-0.5B-Instruct-IQ3_M.gguf](https://huggingface.co/bartowski/Qwen2-0.5B-Instruct-GGUF/blob/main/Qwen2-0.5B-Instruct-IQ3_M.gguf) | IQ3_M | .34GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
43
+
44
+ ## Downloading using huggingface-cli
45
+
46
+ First, make sure you have hugginface-cli installed:
47
+
48
+ ```
49
+ pip install -U "huggingface_hub[cli]"
50
+ ```
51
+
52
+ Then, you can target the specific file you want:
53
+
54
+ ```
55
+ huggingface-cli download bartowski/Qwen2-0.5B-Instruct-GGUF --include "Qwen2-0.5B-Instruct-Q4_K_M.gguf" --local-dir ./
56
+ ```
57
+
58
+ If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
59
+
60
+ ```
61
+ huggingface-cli download bartowski/Qwen2-0.5B-Instruct-GGUF --include "Qwen2-0.5B-Instruct-Q8_0.gguf/*" --local-dir Qwen2-0.5B-Instruct-Q8_0
62
+ ```
63
+
64
+ You can either specify a new local-dir (Qwen2-0.5B-Instruct-Q8_0) or download them all in place (./)
65
+
66
+ ## Which file should I choose?
67
+
68
+ A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
69
+
70
+ The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.
71
+
72
+ If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.
73
+
74
+ If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.
75
+
76
+ Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.
77
+
78
+ If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.
79
+
80
+ If you want to get more into the weeds, you can check out this extremely useful feature chart:
81
+
82
+ [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix)
83
+
84
+ But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.
85
+
86
+ These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.
87
+
88
+ The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
89
+
90
+ Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski