File size: 13,686 Bytes
a01f098
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d8826e84430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d8826e844c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d8826e84550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d8826e845e0>", "_build": "<function ActorCriticPolicy._build at 0x7d8826e84670>", "forward": "<function ActorCriticPolicy.forward at 0x7d8826e84700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d8826e84790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d8826e84820>", "_predict": "<function ActorCriticPolicy._predict at 0x7d8826e848b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d8826e84940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d8826e849d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d8826e84a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d8827013b80>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692703216721344013, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHMtSD4Sj+A8EPfSOg4Lkzlw1nk+CsQeugAAgD8AAIA/zS5HvewKtbuWhkQ83mejPEtQCr3urok9AACAPwAAgD8FDpG+AVprPz+BEr6FPsq+wUY+vrUfdj0AAAAAAAAAAN29uD7zuWI/HaTxPk1ABr9vtKE+KxzGPQAAAAAAAAAAzbG5PY/yArqQwXo6qeZoNTzcKrtmVpG5AAAAAAAAgD/G7I8+kvODPvwtlr2x5ZS+zWAxPWLmcL0AAAAAAAAAAOZwMz6BiZe84lSDO8C+z7l80Qa+FhuuugAAgD8AAIA/ens6viEm1rybuH8+8yP5vY1hNz4i7HQ+AACAPwAAgD8GZlo+7qq/vMULdbtbcM85kYwuvpsSpToAAIA/AACAP4bUMz42i2i83EmjPPNi/7qOVcm9gy3PuwAAgD8AAIA/Wpy5vV2HNj6SjGw9XX13vkZBKb0ejh+8AAAAAAAAAADmtkS9Yjy8P/K+Kr9RDZk+06ttPMhoNL0AAAAAAAAAAFp+TD5O+6u8CFFqOx5T/7w7yR2+MWMMPQAAAAAAAAAAMzaaPb1iMTwu5UQ9nOlqvhaTGTxeFRI9AAAAAAAAAABDMnK+4afzPto79j0aqLW+p1tVvTixkbsAAAAAAAAAAMb9Gz7GZBI/qptHPZUn4L5wWrY9IkFpvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVDQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+fEIw/PgOMAWyUS+aMAXSUR0ChRN+fywwCdX2UKGgGR0BvB4Rf4REnaAdL52gIR0ChRTyk9ECvdX2UKGgGR0Bx7Ng0CRwIaAdNFgFoCEdAoUVeLLpzLnV9lChoBkdAbfCwVTJhfGgHS/RoCEdAoUXDd8Aq/nV9lChoBkdAcX+ixFAmiWgHS/5oCEdAoUaH2EkB0nV9lChoBkdAcjK3Ehq0t2gHTRQBaAhHQKFGiCYCyQh1fZQoaAZHQG/q4zBRAKRoB01cAWgIR0ChRpDW07bMdX2UKGgGR0Bjjh+8XenAaAdN6ANoCEdAoUcK3uuzQnV9lChoBkdAJpVvuPV/c2gHS9poCEdAoUcNd1MdtHV9lChoBkdAbkWmdiDujWgHS+9oCEdAoUeQQFs54nV9lChoBkdAcDQGTs6aLGgHTS4BaAhHQKFHkvJRwZR1fZQoaAZHQHDLDNMXaaloB0v9aAhHQKFIht5UtI11fZQoaAZHQHI57kwN9YxoB00iAWgIR0ChSKMmv4dqdX2UKGgGR0BwBAIUrTYvaAdNCwFoCEdAoUi1zQu27XV9lChoBkdAb/lda+vhZWgHTWwBaAhHQKFI1pu/Dcd1fZQoaAZHQHISxWDHwPRoB00VAWgIR0ChSOxMFlkIdX2UKGgGR0Bvs2cDr7fpaAdL6mgIR0ChSQ4kVvdedX2UKGgGR0Bu4hfQa72+aAdL+GgIR0ChSWHymQ8wdX2UKGgGR0BwP0iyIHkcaAdL1mgIR0ChSfEnkT6BdX2UKGgGR0BwJ8oCuEElaAdNBQFoCEdAoUn7hJiAlXV9lChoBkdAb+angHeJpGgHS/BoCEdAoUpY5o4+83V9lChoBkdAcR6DRc/t6WgHS+FoCEdAoUqbwSamXXV9lChoBkdAcOvlrdnCf2gHTQIBaAhHQKFKpJ5mh/R1fZQoaAZHQG/hVLSNOudoB0vuaAhHQKFKz3C9AX51fZQoaAZHQHAG50KZ2IRoB0v3aAhHQKFLcu+yquN1fZQoaAZHQEhRHww0waloB0u5aAhHQKFLcg13t8h1fZQoaAZHQG/jzD4xk/doB0vfaAhHQKFMYyzHCGh1fZQoaAZHQHDbgXl8w6BoB0vfaAhHQKFMsYgq3E11fZQoaAZHQHBajcuanaZoB0vvaAhHQKFM+RfWtlt1fZQoaAZHQHDIruMMqjJoB0vQaAhHQKFNF76YVqN1fZQoaAZHQHGgG5xzaK1oB00CAWgIR0ChTcSJCSiedX2UKGgGR0Bw7Gy1NQCTaAdL22gIR0ChTj6Skj5cdX2UKGgGR0Btrso+fRNRaAdNjQFoCEdAoU7sBhhH9XV9lChoBkdAbcn4EfT1CmgHS8VoCEdAoU8Kb6P8ynV9lChoBkdAcQUQ66reZWgHS/hoCEdAoU+Wgi/wiXV9lChoBkdAcNsYRdyDI2gHTQIBaAhHQKFQVAdn0051fZQoaAZHQHFLjFhoduJoB0vyaAhHQKFRVfQ8fV91fZQoaAZHQHEd371qWTpoB00BAWgIR0ChUcUfgaWHdX2UKGgGR0BvHuiJwbVCaAdL1mgIR0ChUk5i/fwadX2UKGgGR0By0IE7nxJ/aAdNaQFoCEdAoVNCVjZtenV9lChoBkdAcrISRKYiPmgHTQUBaAhHQKFTXbu+h5B1fZQoaAZHQHDMk8RtgrpoB00BAWgIR0ChU/JAdGRWdX2UKGgGR0Bx3gVtXPqtaAdL5WgIR0ChVBLNnoPkdX2UKGgGR0Bw9MZBLPD6aAdNDwFoCEdAoVR8hLXcxnV9lChoBkdAcjLtoi9qUWgHS9poCEdAoVUIY1pCbHV9lChoBkdAcIol6Z6Uq2gHS+hoCEdAoVWJwVCXyHV9lChoBkdAcO8RoRIz32gHS9VoCEdAoVWdXJYDDHV9lChoBkdAcAoCxeLNwGgHTRYBaAhHQKFV8SGrS3N1fZQoaAZHQG/IxQBPsRhoB0v4aAhHQKFXVOafBep1fZQoaAZHQG3JreANG3FoB0vfaAhHQKFXq6q814x1fZQoaAZHQG3odM9KVY9oB0veaAhHQKFYHPw/gR91fZQoaAZHQHHmeDe0ojRoB00MAWgIR0ChWhuUliSadX2UKGgGR0BxO/0g8r7PaAdL9GgIR0ChWlbkfcN6dX2UKGgGR0BuyUOy3Td+aAdL7WgIR0ChWtwosqaxdX2UKGgGR0BscBeiSJTEaAdL32gIR0ChWwFDF6zFdX2UKGgGR0BlktbiZOSGaAdN6ANoCEdAoVuYT7EYO3V9lChoBkdAcGIeAuqWC2gHS+VoCEdAoVvBxNqQBHV9lChoBkdAcmURNyo4uWgHTTEBaAhHQKFc6V+qioN1fZQoaAZHQHJEQi7kGRpoB0v1aAhHQKFdL1oxpL51fZQoaAZHQHGRdNSIgvFoB00OAWgIR0ChXXazeGfxdX2UKGgGR0ByHSUILPUsaAdNIAFoCEdAoV4Ph60IC3V9lChoBkdAcAa7yxzJZGgHS/NoCEdAoV769Zid8XV9lChoBkdAcNB3ta6jFmgHTQABaAhHQKFfAxM36yl1fZQoaAZHQHGmmbsniNtoB0vHaAhHQKFf+t1ZDAt1fZQoaAZHQHEx548lolFoB00KAWgIR0ChYBHck+otdX2UKGgGR0BxuffJmuklaAdNDAFoCEdAoWJqp1ie/nV9lChoBkdAYZMy4Wk8BGgHTegDaAhHQKFihXDm8ul1fZQoaAZHQHCkCnDR+jNoB0vnaAhHQKFilYTTOPh1fZQoaAZHQHGtKQmu1WtoB0voaAhHQKFizeFcpsp1fZQoaAZHQHHUD81n/T9oB00PAWgIR0ChYwte2NNrdX2UKGgGR0BwZ8H5aePJaAdL1mgIR0ChY3yCe2/jdX2UKGgGR0BCOzsY2sJZaAdLzWgIR0ChY8CDmKZVdX2UKGgGR0BwpDV8Ti84aAdL6GgIR0ChZD+R5kbxdX2UKGgGR0BwkpKh+OOsaAdNSwFoCEdAoWTn+2mYSnV9lChoBkdAYwsnNxEORWgHTegDaAhHQKFlDFYuCf91fZQoaAZHQHCPEJa7mMhoB0vsaAhHQKFlNNC7btZ1fZQoaAZHQHG6ZFocrAhoB0vwaAhHQKFlxrs0HhV1fZQoaAZHQHEs9I5HVgBoB0vgaAhHQKFmClenhsJ1fZQoaAZHQG02yVW0Z3toB0vZaAhHQKFnY19fCyh1fZQoaAZHQHLzbGaQV9FoB0v1aAhHQKFn4ZEUj9p1fZQoaAZHQHCQ7fP5YYBoB00MAWgIR0ChaHJ4jbBXdX2UKGgGR0BxJYcwQDmsaAdNDwFoCEdAoWjev2Xb/XV9lChoBkdAbnGTY/Vy3mgHS+ZoCEdAoWjkfNiYs3V9lChoBkdAbcMj8DSw4mgHS/poCEdAoWj1O9FnZnV9lChoBkdAbMzRFZxJd2gHTSUBaAhHQKFpJnSOR1Z1fZQoaAZHQHFrqDoQnQZoB02qAWgIR0ChaVmjKxLTdX2UKGgGR0BwZCqBEroXaAdL6GgIR0ChaVwuVX3hdX2UKGgGR0BxUI5NoJzDaAdL9WgIR0ChamPppvgndX2UKGgGR0Bxhlzjm0VraAdNJAFoCEdAoWqhOerdWXV9lChoBkdActveeFtbcGgHTUEBaAhHQKFrCi+L3sZ1fZQoaAZHQHDgz8UEgW9oB00oAWgIR0Cha6GuTzNEdX2UKGgGR0BxZWuOjqOcaAdNCAFoCEdAoWxrn3cpLHV9lChoBkdAYYJLIPsiS2gHTegDaAhHQKFsjND+irV1fZQoaAZHQHDAR2OhkAhoB00RAWgIR0ChbZxNZeRgdX2UKGgGR0BsqLAYYR/WaAdL8mgIR0Chban/DLr5dX2UKGgGR0BwD2aoddVvaAdNBgFoCEdAoW3bz7MxGnV9lChoBkdAcC+x//echGgHTSkBaAhHQKFuhU6PsAx1fZQoaAZHQG2DK+zt1IRoB0vgaAhHQKFvM0waisZ1fZQoaAZHQHC34W+GoJloB0v0aAhHQKFvbfWMCLd1fZQoaAZHQHB3LBGhEjRoB00DAWgIR0ChcNms/6frdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}