lombardata
commited on
Upload README.md
Browse files
README.md
CHANGED
@@ -1,141 +1,186 @@
|
|
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
4 |
tags:
|
|
|
|
|
5 |
- generated_from_trainer
|
|
|
6 |
model-index:
|
7 |
- name: drone-DinoVdeau-from-probs-large-2024_11_15-batch-size64_freeze_probs
|
8 |
results: []
|
9 |
---
|
10 |
|
11 |
-
|
12 |
-
should probably proofread and complete it, then remove this comment. -->
|
13 |
|
14 |
-
# drone-DinoVdeau-from-probs-large-2024_11_15-batch-size64_freeze_probs
|
15 |
|
16 |
-
This model is a fine-tuned version of [facebook/dinov2-large](https://huggingface.co/facebook/dinov2-large) on the None dataset.
|
17 |
-
It achieves the following results on the evaluation set:
|
18 |
- Loss: 0.4672
|
19 |
-
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
|
27 |
-
|
28 |
|
29 |
-
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
|
37 |
-
|
38 |
|
39 |
-
|
40 |
|
41 |
The following hyperparameters were used during training:
|
42 |
-
|
43 |
-
-
|
44 |
-
-
|
45 |
-
-
|
46 |
-
-
|
47 |
-
-
|
48 |
-
-
|
49 |
-
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
-
| 0.
|
122 |
-
| 0.
|
123 |
-
| 0.
|
124 |
-
|
125 |
-
| 0.
|
126 |
-
| 0.
|
127 |
-
| 0.
|
128 |
-
| 0.
|
129 |
-
| 0.
|
130 |
-
| 0.
|
131 |
-
| 0.
|
132 |
-
| 0.
|
133 |
-
| 0.
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
---
|
3 |
+
language:
|
4 |
+
- eng
|
5 |
+
license: cc0-1.0
|
6 |
tags:
|
7 |
+
- multilabel-image-classification
|
8 |
+
- multilabel
|
9 |
- generated_from_trainer
|
10 |
+
base_model: drone-DinoVdeau-from-probs-large-2024_11_15-batch-size64_freeze_probs
|
11 |
model-index:
|
12 |
- name: drone-DinoVdeau-from-probs-large-2024_11_15-batch-size64_freeze_probs
|
13 |
results: []
|
14 |
---
|
15 |
|
16 |
+
drone-DinoVdeau-from-probs is a fine-tuned version of [drone-DinoVdeau-from-probs-large-2024_11_15-batch-size64_freeze_probs](https://huggingface.co/drone-DinoVdeau-from-probs-large-2024_11_15-batch-size64_freeze_probs). It achieves the following results on the test set:
|
|
|
17 |
|
|
|
18 |
|
|
|
|
|
19 |
- Loss: 0.4672
|
20 |
+
- RMSE: 0.1553
|
21 |
+
- MAE: 0.1147
|
22 |
+
- KL Divergence: 0.3577
|
23 |
+
|
24 |
+
---
|
25 |
+
|
26 |
+
# Model description
|
27 |
+
drone-DinoVdeau-from-probs is a model built on top of drone-DinoVdeau-from-probs-large-2024_11_15-batch-size64_freeze_probs model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.
|
28 |
|
29 |
+
The source code for training the model can be found in this [Git repository](https://github.com/SeatizenDOI/DinoVdeau).
|
30 |
|
31 |
+
- **Developed by:** [lombardata](https://huggingface.co/lombardata), credits to [César Leblanc](https://huggingface.co/CesarLeblanc) and [Victor Illien](https://huggingface.co/groderg)
|
32 |
|
33 |
+
---
|
34 |
+
|
35 |
+
# Intended uses & limitations
|
36 |
+
You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.
|
37 |
|
38 |
+
---
|
39 |
|
40 |
+
# Training and evaluation data
|
41 |
+
Details on the estimated number of images for each class are given in the following table:
|
42 |
+
| Class | train | test | val | Total |
|
43 |
+
|:------------------------|--------:|-------:|------:|--------:|
|
44 |
+
| Acropore_branched | 1220 | 363 | 362 | 1945 |
|
45 |
+
| Acropore_digitised | 586 | 195 | 189 | 970 |
|
46 |
+
| Acropore_tabular | 308 | 133 | 119 | 560 |
|
47 |
+
| Algae | 4777 | 1372 | 1384 | 7533 |
|
48 |
+
| Dead_coral | 2513 | 671 | 693 | 3877 |
|
49 |
+
| Millepore | 136 | 55 | 59 | 250 |
|
50 |
+
| No_acropore_encrusting | 252 | 88 | 93 | 433 |
|
51 |
+
| No_acropore_massive | 2158 | 725 | 726 | 3609 |
|
52 |
+
| No_acropore_sub_massive | 2036 | 582 | 612 | 3230 |
|
53 |
+
| Rock | 5976 | 1941 | 1928 | 9845 |
|
54 |
+
| Rubble | 4851 | 1486 | 1474 | 7811 |
|
55 |
+
| Sand | 6155 | 2019 | 1990 | 10164 |
|
56 |
|
57 |
+
---
|
58 |
|
59 |
+
# Training procedure
|
60 |
|
61 |
+
## Training hyperparameters
|
62 |
|
63 |
The following hyperparameters were used during training:
|
64 |
+
|
65 |
+
- **Number of Epochs**: 79.0
|
66 |
+
- **Learning Rate**: 0.001
|
67 |
+
- **Train Batch Size**: 64
|
68 |
+
- **Eval Batch Size**: 64
|
69 |
+
- **Optimizer**: Adam
|
70 |
+
- **LR Scheduler Type**: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
|
71 |
+
- **Freeze Encoder**: Yes
|
72 |
+
- **Data Augmentation**: Yes
|
73 |
+
|
74 |
+
|
75 |
+
## Data Augmentation
|
76 |
+
Data were augmented using the following transformations :
|
77 |
+
|
78 |
+
Train Transforms
|
79 |
+
- **PreProcess**: No additional parameters
|
80 |
+
- **Resize**: probability=1.00
|
81 |
+
- **RandomHorizontalFlip**: probability=0.25
|
82 |
+
- **RandomVerticalFlip**: probability=0.25
|
83 |
+
- **ColorJiggle**: probability=0.25
|
84 |
+
- **RandomPerspective**: probability=0.25
|
85 |
+
- **Normalize**: probability=1.00
|
86 |
+
|
87 |
+
Val Transforms
|
88 |
+
- **PreProcess**: No additional parameters
|
89 |
+
- **Resize**: probability=1.00
|
90 |
+
- **Normalize**: probability=1.00
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
## Training results
|
95 |
+
Epoch | Validation Loss | MAE | RMSE | KL div | Learning Rate
|
96 |
+
--- | --- | --- | --- | --- | ---
|
97 |
+
1 | 0.5005590319633484 | 0.1552 | 0.1904 | 0.1025 | 0.001
|
98 |
+
2 | 0.47547808289527893 | 0.1245 | 0.1681 | 0.5180 | 0.001
|
99 |
+
3 | 0.47452571988105774 | 0.1227 | 0.1675 | 0.6862 | 0.001
|
100 |
+
4 | 0.47420722246170044 | 0.1255 | 0.1672 | 0.3212 | 0.001
|
101 |
+
5 | 0.47245556116104126 | 0.1224 | 0.1653 | 0.5072 | 0.001
|
102 |
+
6 | 0.4725925624370575 | 0.1216 | 0.1657 | 0.6710 | 0.001
|
103 |
+
7 | 0.4731809198856354 | 0.1255 | 0.1655 | 0.3162 | 0.001
|
104 |
+
8 | 0.47284314036369324 | 0.1260 | 0.1651 | 0.2719 | 0.001
|
105 |
+
9 | 0.4707973003387451 | 0.1206 | 0.1639 | 0.6393 | 0.001
|
106 |
+
10 | 0.4732784628868103 | 0.1230 | 0.1654 | 0.5359 | 0.001
|
107 |
+
11 | 0.47162503004074097 | 0.1253 | 0.1647 | 0.2479 | 0.001
|
108 |
+
12 | 0.47083696722984314 | 0.1244 | 0.1631 | 0.3119 | 0.001
|
109 |
+
13 | 0.47152063250541687 | 0.1230 | 0.1635 | 0.3694 | 0.001
|
110 |
+
14 | 0.47212228178977966 | 0.1216 | 0.1653 | 0.5592 | 0.001
|
111 |
+
15 | 0.47012239694595337 | 0.1213 | 0.1628 | 0.4936 | 0.001
|
112 |
+
16 | 0.4718552827835083 | 0.1229 | 0.1646 | 0.2820 | 0.001
|
113 |
+
17 | 0.46933484077453613 | 0.1200 | 0.1621 | 0.5294 | 0.001
|
114 |
+
18 | 0.4710436165332794 | 0.1216 | 0.1635 | 0.4093 | 0.001
|
115 |
+
19 | 0.4698491394519806 | 0.1219 | 0.1622 | 0.2918 | 0.001
|
116 |
+
20 | 0.4691685736179352 | 0.1190 | 0.1617 | 0.4772 | 0.001
|
117 |
+
21 | 0.46830564737319946 | 0.1204 | 0.1606 | 0.4336 | 0.001
|
118 |
+
22 | 0.47239789366722107 | 0.1183 | 0.1650 | 0.7962 | 0.001
|
119 |
+
23 | 0.47136834263801575 | 0.1223 | 0.1641 | 0.2854 | 0.001
|
120 |
+
24 | 0.4706868529319763 | 0.1207 | 0.1633 | 0.4206 | 0.001
|
121 |
+
25 | 0.46786901354789734 | 0.1185 | 0.1606 | 0.5436 | 0.001
|
122 |
+
26 | 0.47084224224090576 | 0.1192 | 0.1634 | 0.4964 | 0.001
|
123 |
+
27 | 0.4695045053958893 | 0.1185 | 0.1625 | 0.6399 | 0.001
|
124 |
+
28 | 0.4700873792171478 | 0.1184 | 0.1624 | 0.5737 | 0.001
|
125 |
+
29 | 0.4698559045791626 | 0.1200 | 0.1624 | 0.4459 | 0.001
|
126 |
+
30 | 0.4722815454006195 | 0.1254 | 0.1643 | 0.2726 | 0.001
|
127 |
+
31 | 0.46958214044570923 | 0.1184 | 0.1622 | 0.5308 | 0.001
|
128 |
+
32 | 0.46677276492118835 | 0.1175 | 0.1593 | 0.4200 | 0.0001
|
129 |
+
33 | 0.46626824140548706 | 0.1177 | 0.1587 | 0.3529 | 0.0001
|
130 |
+
34 | 0.46665358543395996 | 0.1181 | 0.1592 | 0.3588 | 0.0001
|
131 |
+
35 | 0.46587392687797546 | 0.1160 | 0.1584 | 0.4813 | 0.0001
|
132 |
+
36 | 0.46578526496887207 | 0.1173 | 0.1581 | 0.3504 | 0.0001
|
133 |
+
37 | 0.4654408395290375 | 0.1158 | 0.1578 | 0.3919 | 0.0001
|
134 |
+
38 | 0.46546319127082825 | 0.1166 | 0.1580 | 0.4058 | 0.0001
|
135 |
+
39 | 0.465843141078949 | 0.1174 | 0.1585 | 0.4118 | 0.0001
|
136 |
+
40 | 0.46561121940612793 | 0.1170 | 0.1579 | 0.3564 | 0.0001
|
137 |
+
41 | 0.4657152593135834 | 0.1171 | 0.1582 | 0.3573 | 0.0001
|
138 |
+
42 | 0.4651602804660797 | 0.1155 | 0.1579 | 0.5042 | 0.0001
|
139 |
+
43 | 0.4651065468788147 | 0.1157 | 0.1575 | 0.4462 | 0.0001
|
140 |
+
44 | 0.46537330746650696 | 0.1166 | 0.1579 | 0.4236 | 0.0001
|
141 |
+
45 | 0.46489208936691284 | 0.1151 | 0.1574 | 0.4510 | 0.0001
|
142 |
+
46 | 0.46484702825546265 | 0.1157 | 0.1575 | 0.4490 | 0.0001
|
143 |
+
47 | 0.4648602306842804 | 0.1152 | 0.1574 | 0.4751 | 0.0001
|
144 |
+
48 | 0.4647873342037201 | 0.1151 | 0.1575 | 0.5305 | 0.0001
|
145 |
+
49 | 0.4647849500179291 | 0.1154 | 0.1574 | 0.4799 | 0.0001
|
146 |
+
50 | N/A | 0.0000 | 0.0000 | 0.0000 | 0.0001
|
147 |
+
51 | 0.465638667345047 | 0.1151 | 0.1582 | 0.4879 | 0.0001
|
148 |
+
52 | 0.46429532766342163 | 0.1155 | 0.1566 | 0.4199 | 0.0001
|
149 |
+
53 | 0.46441230177879333 | 0.1156 | 0.1569 | 0.3880 | 0.0001
|
150 |
+
54 | 0.4646008610725403 | 0.1148 | 0.1569 | 0.4229 | 0.0001
|
151 |
+
55 | 0.4644174873828888 | 0.1159 | 0.1569 | 0.4009 | 0.0001
|
152 |
+
56 | 0.464743047952652 | 0.1164 | 0.1572 | 0.3405 | 0.0001
|
153 |
+
57 | 0.4645179808139801 | 0.1152 | 0.1569 | 0.4188 | 0.0001
|
154 |
+
58 | 0.465102881193161 | 0.1164 | 0.1576 | 0.3079 | 0.0001
|
155 |
+
59 | 0.4644688367843628 | 0.1150 | 0.1570 | 0.4339 | 1e-05
|
156 |
+
60 | 0.46417686343193054 | 0.1150 | 0.1566 | 0.3894 | 1e-05
|
157 |
+
61 | 0.4639436900615692 | 0.1146 | 0.1563 | 0.4145 | 1e-05
|
158 |
+
62 | 0.4641311764717102 | 0.1148 | 0.1565 | 0.4064 | 1e-05
|
159 |
+
63 | 0.4643491506576538 | 0.1149 | 0.1565 | 0.3542 | 1e-05
|
160 |
+
64 | 0.46402981877326965 | 0.1150 | 0.1564 | 0.3718 | 1e-05
|
161 |
+
65 | 0.4640822410583496 | 0.1152 | 0.1565 | 0.4128 | 1e-05
|
162 |
+
66 | 0.46441909670829773 | 0.1145 | 0.1570 | 0.4988 | 1e-05
|
163 |
+
67 | 0.46383005380630493 | 0.1151 | 0.1562 | 0.4122 | 1e-05
|
164 |
+
68 | 0.4639807641506195 | 0.1144 | 0.1565 | 0.4579 | 1e-05
|
165 |
+
69 | 0.4637599587440491 | 0.1143 | 0.1561 | 0.4197 | 1e-05
|
166 |
+
70 | 0.46392253041267395 | 0.1145 | 0.1563 | 0.4286 | 1e-05
|
167 |
+
71 | 0.46406444907188416 | 0.1153 | 0.1563 | 0.3542 | 1e-05
|
168 |
+
72 | 0.46417826414108276 | 0.1147 | 0.1566 | 0.4250 | 1e-05
|
169 |
+
73 | 0.4637835919857025 | 0.1140 | 0.1561 | 0.4397 | 1e-05
|
170 |
+
74 | 0.463798850774765 | 0.1145 | 0.1563 | 0.4437 | 1e-05
|
171 |
+
75 | 0.46379053592681885 | 0.1145 | 0.1561 | 0.4049 | 1e-05
|
172 |
+
76 | 0.4639701247215271 | 0.1141 | 0.1565 | 0.4926 | 1.0000000000000002e-06
|
173 |
+
77 | 0.463869571685791 | 0.1142 | 0.1562 | 0.4427 | 1.0000000000000002e-06
|
174 |
+
78 | 0.46388140320777893 | 0.1145 | 0.1563 | 0.4293 | 1.0000000000000002e-06
|
175 |
+
79 | 0.46412238478660583 | 0.1147 | 0.1564 | 0.3765 | 1.0000000000000002e-06
|
176 |
+
|
177 |
+
|
178 |
+
---
|
179 |
+
|
180 |
+
# Framework Versions
|
181 |
+
|
182 |
+
- **Transformers**: 4.41.0
|
183 |
+
- **Pytorch**: 2.5.0+cu124
|
184 |
+
- **Datasets**: 3.0.2
|
185 |
+
- **Tokenizers**: 0.19.1
|
186 |
+
|