File size: 1,691 Bytes
9ea77f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b29d446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ea77f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: togethercomputer/evo-1-8k-base
model-index:
- name: lora_evo_ta_all_layers_13
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lora_evo_ta_all_layers_13

This model is a fine-tuned version of [togethercomputer/evo-1-8k-base](https://huggingface.co/togethercomputer/evo-1-8k-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5250

## Model description

Trained on 1K dataset instead of 400

lora_alpha = 256

lora_dropout = 0.05

lora_r = 128

epochs = 3

learning rate = 3e-4

warmup_steps=100

gradient_accumulation_steps = 1

train_batch = 2

eval_batch = 2

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 100
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7264        | 1.0   | 1762 | 2.5781          |
| 2.5569        | 2.0   | 3524 | 2.5379          |
| 2.4982        | 3.0   | 5286 | 2.5250          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1