--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: togethercomputer/evo-1-8k-base model-index: - name: lora_evo_ta_all_layers_18_attention_layers results: [] --- # lora_evo_ta_all_layers_18_attention_layers This model is a fine-tuned version of [togethercomputer/evo-1-8k-base](https://huggingface.co/togethercomputer/evo-1-8k-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8474 ## Model description Trained on single ID token "5K dataset" filtered to 4k sequences (20% for test data) lora_alpha = 64 <-------------- lora_dropout = 0.1 lora_r = 64 <--------- epochs = 3 learning rate = 3e-4 warmup_steps=500 gradient_accumulation_steps = 1 train_batch = 1 eval_batch = 1 ONLY ATTENTION LAYER <--------------------- ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.0886 | 0.375 | 1200 | 3.0465 | | 3.0274 | 0.75 | 2400 | 2.9992 | | 2.9835 | 1.125 | 3600 | 2.9622 | | 2.9334 | 1.5 | 4800 | 2.9397 | | 2.8989 | 1.875 | 6000 | 2.9026 | | 2.8609 | 2.25 | 7200 | 2.8744 | | 2.8413 | 2.625 | 8400 | 2.8584 | | 2.8341 | 3.0 | 9600 | 2.8474 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1