File size: 3,370 Bytes
ff65980
 
 
 
 
 
 
 
1a7319b
 
 
6b54b63
1a7319b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1df6625
1a7319b
 
d4b8424
 
1a7319b
 
647f76e
1a7319b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4b8424
1a7319b
d4b8424
 
 
1a7319b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
datasets:
- lst20
language:
- th
widget:
  - text: วัน ที่ _ 12 _ มีนาคม นี้ _ ฉัน จะ ไป เที่ยว วัดพระแก้ว _ ที่ กรุงเทพ
library_name: transformers
---
# HoogBERTa

This repository includes the Thai pretrained language representation (HoogBERTa_base) fine-tuned for **Part-of-Speech Tagging (POS) Task**.  


# Documentation


## Prerequisite
Since we use subword-nmt BPE encoding, input needs to be pre-tokenize using [BEST](https://huggingface.co/datasets/best2009) standard before inputting into HoogBERTa 
```
pip install attacut
```

## Getting Start
To initialize the model from hub, use the following commands
```python
from transformers import RobertaTokenizerFast, RobertaForTokenClassification
from attacut import tokenize
import torch

tokenizer = RobertaTokenizerFast.from_pretrained("lst-nectec/HoogBERTa-POS-lst20")
model = RobertaForTokenClassification.from_pretrained("lst-nectec/HoogBERTa-POS-lst20")
```

To do POS Tagging, use the following commands

```python
from transformers import pipeline

nlp = pipeline('token-classification', model=model, tokenizer=tokenizer, aggregation_strategy="none")

sentence = "วันที่ 12 มีนาคมนี้ ฉันจะไปเที่ยววัดพระแก้ว ที่กรุงเทพ"
all_sent = []
sentences = sentence.split(" ")
for sent in sentences:
    all_sent.append(" ".join(tokenize(sent)).replace("_","[!und:]"))

sentence = " _ ".join(all_sent)

print(nlp(sentence))
```

For batch processing,

```python
from transformers import pipeline

nlp = pipeline('token-classification', model=model, tokenizer=tokenizer, aggregation_strategy="none")

sentenceL = ["วันที่ 12 มีนาคมนี้","ฉันจะไปเที่ยววัดพระแก้ว ที่กรุงเทพ"]
inputList = []
for sentX in sentenceL:
  sentences = sentX.split(" ")
  all_sent = []
  for sent in sentences:
      all_sent.append(" ".join(tokenize(sent)).replace("_","[!und:]"))

  sentence = " _ ".join(all_sent)
  inputList.append(sentence)

print(nlp(inputList))
```

# Huggingface Models
1. `HoogBERTaEncoder`
 - [HoogBERTa](https://huggingface.co/lst-nectec/HoogBERTa): `Feature Extraction` and `Mask Language Modeling`
2. `HoogBERTaMuliTaskTagger`:
 - [HoogBERTa-NER-lst20](https://huggingface.co/lst-nectec/HoogBERTa-NER-lst20): `Named-entity recognition (NER)` based on LST20
 - [HoogBERTa-POS-lst20](https://huggingface.co/lst-nectec/HoogBERTa-POS-lst20): `Part-of-speech tagging (POS)` based on LST20
 - [HoogBERTa-SENTENCE-lst20](https://huggingface.co/lst-nectec/HoogBERTa-SENTENCE-lst20): `Clause Boundary Classification` based on LST20


# Citation

Please cite as:

``` bibtex
@inproceedings{porkaew2021hoogberta,
  title = {HoogBERTa: Multi-task Sequence Labeling using Thai Pretrained Language Representation},
  author = {Peerachet Porkaew, Prachya Boonkwan and Thepchai Supnithi},
  booktitle = {The Joint International Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP 2021)},
  year = {2021},
  address={Online}
}
```

Download full-text [PDF](https://drive.google.com/file/d/1hwdyIssR5U_knhPE2HJigrc0rlkqWeLF/view?usp=sharing)  
Check out the code on [Github](https://github.com/lstnlp/HoogBERTa)