ltg
/

davda54 commited on
Commit
ee89185
1 Parent(s): 101696c
README.md ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ inference: false
5
+ tags:
6
+ - BERT
7
+ - BNC-BERT
8
+ - encoder
9
+ license: cc-by-4.0
10
+ ---
11
+
12
+ # BNC-BERT
13
+
14
+ - Paper: [Trained on 100 million words and still in shape: BERT meets British National Corpus](https://arxiv.org/abs/2303.09859)
15
+ - GitHub: [ltgoslo/ltg-bert](https://github.com/ltgoslo/ltg-bert)
16
+
17
+ ## Example usage
18
+
19
+ This model currently needs a custom wrapper from `modeling_ltgbert.py`. Then you can use it like this:
20
+
21
+ ```python
22
+ import torch
23
+ from transformers import AutoTokenizer
24
+ from modeling_ltgbert import LtgBertForMaskedLM
25
+
26
+ tokenizer = AutoTokenizer.from_pretrained("path/to/folder")
27
+ bert = LtgBertForMaskedLM.from_pretrained("path/to/folder")
28
+ ```
29
+
30
+ ## Please cite the following publication (just arXiv for now)
31
+ ```bibtex
32
+ @inproceedings{samuel-etal-2023-trained,
33
+ title = "Trained on 100 million words and still in shape: {BERT} meets {B}ritish {N}ational {C}orpus",
34
+ author = "Samuel, David and
35
+ Kutuzov, Andrey and
36
+ {\O}vrelid, Lilja and
37
+ Velldal, Erik",
38
+ booktitle = "Findings of the Association for Computational Linguistics: EACL 2023",
39
+ month = may,
40
+ year = "2023",
41
+ address = "Dubrovnik, Croatia",
42
+ publisher = "Association for Computational Linguistics",
43
+ url = "https://aclanthology.org/2023.findings-eacl.146",
44
+ pages = "1954--1974",
45
+ abstract = "While modern masked language models (LMs) are trained on ever larger corpora, we here explore the effects of down-scaling training to a modestly-sized but representative, well-balanced, and publicly available English text source {--} the British National Corpus. We show that pre-training on this carefully curated corpus can reach better performance than the original BERT model. We argue that this type of corpora has great potential as a language modeling benchmark. To showcase this potential, we present fair, reproducible and data-efficient comparative studies of LMs, in which we evaluate several training objectives and model architectures and replicate previous empirical results in a systematic way. We propose an optimized LM architecture called LTG-BERT.",
46
+ }
47
+ ```
__init__.py ADDED
File without changes
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LtgBertForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_ltgbert.LtgBertConfig",
8
+ "AutoModelForMaskedLM": "modeling_ltgbert.LtgBertForMaskedLM",
9
+ "AutoModelForSequenceClassification": "modeling_ltgbert.LtgBertForSequenceClassification"
10
+ },
11
+ "classifier_dropout": 0.2,
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "intermediate_size": 2048,
15
+ "layer_norm_eps": 1e-07,
16
+ "max_position_embeddings": 512,
17
+ "model_type": "ltgbert",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "output_all_encoded_layers": true,
21
+ "pad_token_id": 4,
22
+ "position_bucket_size": 32,
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.26.0",
25
+ "vocab_size": 16384
26
+ }
configuration_ltgbert.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Language Technology Group from University of Oslo and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ LTG-BERT configutation """
17
+
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+
21
+
22
+ LTG_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
23
+ "bnc-bert-span": "https://huggingface.co/ltg/bnc-bert-span",
24
+ "bnc-bert-span-2x": "https://huggingface.co/ltg/bnc-bert-span-2x",
25
+ "bnc-bert-span-0.5x": "https://huggingface.co/ltg/bnc-bert-span-0.5x",
26
+ "bnc-bert-span-0.25x": "https://huggingface.co/ltg/bnc-bert-span-0.25x",
27
+ "bnc-bert-span-order": "https://huggingface.co/ltg/bnc-bert-span-order",
28
+ "bnc-bert-span-document": "https://huggingface.co/ltg/bnc-bert-span-document",
29
+ "bnc-bert-span-word": "https://huggingface.co/ltg/bnc-bert-span-word",
30
+ "bnc-bert-span-subword": "https://huggingface.co/ltg/bnc-bert-span-subword",
31
+
32
+ "norbert3-xs": "https://huggingface.co/ltg/norbert3-xs/config.json",
33
+ "norbert3-small": "https://huggingface.co/ltg/norbert3-small/config.json",
34
+ "norbert3-base": "https://huggingface.co/ltg/norbert3-base/config.json",
35
+ "norbert3-large": "https://huggingface.co/ltg/norbert3-large/config.json",
36
+
37
+ "norbert3-oversampled-base": "https://huggingface.co/ltg/norbert3-oversampled-base/config.json",
38
+ "norbert3-ncc-base": "https://huggingface.co/ltg/norbert3-ncc-base/config.json",
39
+ "norbert3-nak-base": "https://huggingface.co/ltg/norbert3-nak-base/config.json",
40
+ "norbert3-nb-base": "https://huggingface.co/ltg/norbert3-nb-base/config.json",
41
+ "norbert3-wiki-base": "https://huggingface.co/ltg/norbert3-wiki-base/config.json",
42
+ "norbert3-c4-base": "https://huggingface.co/ltg/norbert3-c4-base/config.json"
43
+ }
44
+
45
+
46
+ class LtgBertConfig(PretrainedConfig):
47
+ r"""
48
+ This is the configuration class to store the configuration of a [`LtgBertModel`]. It is used to
49
+ instantiate an LTG-BERT model according to the specified arguments, defining the model architecture.
50
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
51
+ documentation from [`PretrainedConfig`] for more information.
52
+ Args:
53
+ vocab_size (`int`, *optional*, defaults to 16384):
54
+ Vocabulary size of the LTG-BERT model. Defines the number of different tokens that can be represented by the
55
+ `inputs_ids` passed when calling [`LtgBertModel`].
56
+ hidden_size (`int`, *optional*, defaults to 768):
57
+ Dimensionality of the encoder layers and the pooler layer.
58
+ num_hidden_layers (`int`, *optional*, defaults to 12):
59
+ Number of hidden layers in the Transformer encoder.
60
+ num_attention_heads (`int`, *optional*, defaults to 12):
61
+ Number of attention heads for each attention layer in the Transformer encoder.
62
+ intermediate_size (`int`, *optional*, defaults to 2048):
63
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
64
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
65
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
66
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
67
+ The dropout ratio for the attention probabilities.
68
+ max_position_embeddings (`int`, *optional*, defaults to 512):
69
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
70
+ just in case (e.g., 512 or 1024 or 2048).
71
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
72
+ The epsilon used by the layer normalization layers.
73
+ classifier_dropout (`float`, *optional*):
74
+ The dropout ratio for the classification head.
75
+ """
76
+ model_type = "ltgbert"
77
+ def __init__(
78
+ self,
79
+ vocab_size=16384,
80
+ attention_probs_dropout_prob=0.1,
81
+ hidden_dropout_prob=0.1,
82
+ hidden_size=768,
83
+ intermediate_size=2048,
84
+ max_position_embeddings=512,
85
+ position_bucket_size=32,
86
+ num_attention_heads=12,
87
+ num_hidden_layers=12,
88
+ layer_norm_eps=1.0e-7,
89
+ pad_token_id=4,
90
+ output_all_encoded_layers=True,
91
+ classifier_dropout=None,
92
+ **kwargs,
93
+ ):
94
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
95
+
96
+ self.vocab_size = vocab_size
97
+ self.hidden_size = hidden_size
98
+ self.num_hidden_layers = num_hidden_layers
99
+ self.num_attention_heads = num_attention_heads
100
+ self.intermediate_size = intermediate_size
101
+ self.hidden_dropout_prob = hidden_dropout_prob
102
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
103
+ self.max_position_embeddings = max_position_embeddings
104
+ self.output_all_encoded_layers = output_all_encoded_layers
105
+ self.position_bucket_size = position_bucket_size
106
+ self.layer_norm_eps = layer_norm_eps
107
+ self.classifier_dropout = classifier_dropout
modeling_ltgbert.py ADDED
@@ -0,0 +1,795 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Language Technology Group from University of Oslo and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ PyTorch LTG-BERT model."""
17
+
18
+
19
+ import math
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn as nn
24
+ import torch.nn.functional as F
25
+ from torch.utils import checkpoint
26
+
27
+ from .configuration_ltgbert import LtgBertConfig
28
+ from transformers.modeling_utils import PreTrainedModel
29
+ from transformers.activations import gelu_new
30
+ from transformers.modeling_outputs import (
31
+ MaskedLMOutput,
32
+ MultipleChoiceModelOutput,
33
+ QuestionAnsweringModelOutput,
34
+ SequenceClassifierOutput,
35
+ TokenClassifierOutput,
36
+ BaseModelOutput
37
+ )
38
+ from transformers.pytorch_utils import softmax_backward_data
39
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward
40
+
41
+
42
+ _CHECKPOINT_FOR_DOC = "ltg/bnc-bert-span"
43
+ _CONFIG_FOR_DOC = "LtgBertConfig"
44
+
45
+
46
+ LTG_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
47
+ "bnc-bert-span",
48
+ "bnc-bert-span-2x",
49
+ "bnc-bert-span-0.5x",
50
+ "bnc-bert-span-0.25x",
51
+ "bnc-bert-span-order",
52
+ "bnc-bert-span-document",
53
+ "bnc-bert-span-word",
54
+ "bnc-bert-span-subword",
55
+
56
+ "norbert3-xs",
57
+ "norbert3-small",
58
+ "norbert3-base",
59
+ "norbert3-large",
60
+
61
+ "norbert3-oversampled-base",
62
+ "norbert3-ncc-base",
63
+ "norbert3-nak-base",
64
+ "norbert3-nb-base",
65
+ "norbert3-wiki-base",
66
+ "norbert3-c4-base"
67
+ ]
68
+
69
+
70
+ class Encoder(nn.Module):
71
+ def __init__(self, config, activation_checkpointing=False):
72
+ super().__init__()
73
+ self.layers = nn.ModuleList([EncoderLayer(config) for _ in range(config.num_hidden_layers)])
74
+
75
+ for i, layer in enumerate(self.layers):
76
+ layer.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
77
+ layer.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
78
+
79
+ self.activation_checkpointing = activation_checkpointing
80
+
81
+ def forward(self, hidden_states, attention_mask, relative_embedding):
82
+ hidden_states, attention_probs = [hidden_states], []
83
+
84
+ for layer in self.layers:
85
+ if self.activation_checkpointing:
86
+ hidden_state, attention_p = checkpoint.checkpoint(layer, hidden_states[-1], attention_mask, relative_embedding)
87
+ else:
88
+ hidden_state, attention_p = layer(hidden_states[-1], attention_mask, relative_embedding)
89
+
90
+ hidden_states.append(hidden_state)
91
+ attention_probs.append(attention_p)
92
+
93
+ return hidden_states, attention_probs
94
+
95
+
96
+ class MaskClassifier(nn.Module):
97
+ def __init__(self, config, subword_embedding):
98
+ super().__init__()
99
+ self.nonlinearity = nn.Sequential(
100
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
101
+ nn.Linear(config.hidden_size, config.hidden_size),
102
+ nn.GELU(),
103
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
104
+ nn.Dropout(config.hidden_dropout_prob),
105
+ nn.Linear(subword_embedding.size(1), subword_embedding.size(0))
106
+ )
107
+ self.initialize(config.hidden_size, subword_embedding)
108
+
109
+ def initialize(self, hidden_size, embedding):
110
+ std = math.sqrt(2.0 / (5.0 * hidden_size))
111
+ nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
112
+ self.nonlinearity[-1].weight = embedding
113
+ self.nonlinearity[1].bias.data.zero_()
114
+ self.nonlinearity[-1].bias.data.zero_()
115
+
116
+ def forward(self, x, masked_lm_labels=None):
117
+ if masked_lm_labels is not None:
118
+ x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze())
119
+ x = self.nonlinearity(x)
120
+ return x
121
+
122
+
123
+ class EncoderLayer(nn.Module):
124
+ def __init__(self, config):
125
+ super().__init__()
126
+ self.attention = Attention(config)
127
+ self.mlp = FeedForward(config)
128
+
129
+ def forward(self, x, padding_mask, relative_embedding):
130
+ attention_output, attention_probs = self.attention(x, padding_mask, relative_embedding)
131
+ x = x + attention_output
132
+ x = x + self.mlp(x)
133
+ return x, attention_probs
134
+
135
+
136
+ class GeGLU(nn.Module):
137
+ def forward(self, x):
138
+ x, gate = x.chunk(2, dim=-1)
139
+ x = x * gelu_new(gate)
140
+ return x
141
+
142
+
143
+ class FeedForward(nn.Module):
144
+ def __init__(self, config):
145
+ super().__init__()
146
+ self.mlp = nn.Sequential(
147
+ nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False),
148
+ nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False),
149
+ GeGLU(),
150
+ nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False),
151
+ nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
152
+ nn.Dropout(config.hidden_dropout_prob)
153
+ )
154
+ self.initialize(config.hidden_size)
155
+
156
+ def initialize(self, hidden_size):
157
+ std = math.sqrt(2.0 / (5.0 * hidden_size))
158
+ nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
159
+ nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std)
160
+
161
+ def forward(self, x):
162
+ return self.mlp(x)
163
+
164
+
165
+ class MaskedSoftmax(torch.autograd.Function):
166
+ @staticmethod
167
+ def forward(self, x, mask, dim):
168
+ self.dim = dim
169
+ x.masked_fill_(mask, float('-inf'))
170
+ x = torch.softmax(x, self.dim)
171
+ x.masked_fill_(mask, 0.0)
172
+ self.save_for_backward(x)
173
+ return x
174
+
175
+ @staticmethod
176
+ def backward(self, grad_output):
177
+ output, = self.saved_tensors
178
+ input_grad = softmax_backward_data(self, grad_output, output, self.dim, output)
179
+ return input_grad, None, None
180
+
181
+
182
+ class Attention(nn.Module):
183
+ def __init__(self, config):
184
+ super().__init__()
185
+
186
+ self.config = config
187
+
188
+ if config.hidden_size % config.num_attention_heads != 0:
189
+ raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}")
190
+
191
+ self.hidden_size = config.hidden_size
192
+ self.num_heads = config.num_attention_heads
193
+ self.head_size = config.hidden_size // config.num_attention_heads
194
+
195
+ self.in_proj_qk = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
196
+ self.in_proj_v = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
197
+ self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
198
+
199
+ self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
200
+ self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
201
+
202
+ position_indices = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \
203
+ - torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0)
204
+ position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings)
205
+ position_indices = config.position_bucket_size - 1 + position_indices
206
+ self.register_buffer("position_indices", position_indices, persistent=True)
207
+
208
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
209
+ self.scale = 1.0 / math.sqrt(3 * self.head_size)
210
+ self.initialize()
211
+
212
+ def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
213
+ sign = torch.sign(relative_pos)
214
+ mid = bucket_size // 2
215
+ abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1))
216
+ log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid
217
+ bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
218
+ return bucket_pos
219
+
220
+ def initialize(self):
221
+ std = math.sqrt(2.0 / (5.0 * self.hidden_size))
222
+ nn.init.trunc_normal_(self.in_proj_qk.weight, mean=0.0, std=std, a=-2*std, b=2*std)
223
+ nn.init.trunc_normal_(self.in_proj_v.weight, mean=0.0, std=std, a=-2*std, b=2*std)
224
+ nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std)
225
+ self.in_proj_qk.bias.data.zero_()
226
+ self.in_proj_v.bias.data.zero_()
227
+ self.out_proj.bias.data.zero_()
228
+
229
+ def compute_attention_scores(self, hidden_states, relative_embedding):
230
+ key_len, batch_size, _ = hidden_states.size()
231
+ query_len = key_len
232
+
233
+ if self.position_indices.size(0) < query_len:
234
+ position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \
235
+ - torch.arange(query_len, dtype=torch.long).unsqueeze(0)
236
+ position_indices = self.make_log_bucket_position(position_indices, self.position_bucket_size, 512)
237
+ position_indices = self.position_bucket_size - 1 + position_indices
238
+ self.position_indices = position_indices.to(hidden_states.device)
239
+
240
+ hidden_states = self.pre_layer_norm(hidden_states)
241
+
242
+ query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
243
+ value = self.in_proj_v(hidden_states) # shape: [T, B, D]
244
+
245
+ query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
246
+ key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
247
+ value = value.view(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
248
+
249
+ attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale)
250
+
251
+ query_pos, key_pos = self.in_proj_qk(self.dropout(relative_embedding)).chunk(2, dim=-1) # shape: [2T-1, D]
252
+ query_pos = query_pos.view(-1, self.num_heads, self.head_size) # shape: [2T-1, H, D]
253
+ key_pos = key_pos.view(-1, self.num_heads, self.head_size) # shape: [2T-1, H, D]
254
+
255
+ query = query.view(batch_size, self.num_heads, query_len, self.head_size)
256
+ key = key.view(batch_size, self.num_heads, query_len, self.head_size)
257
+
258
+ attention_c_p = torch.einsum("bhqd,khd->bhqk", query, key_pos.squeeze(1) * self.scale)
259
+ attention_p_c = torch.einsum("bhkd,qhd->bhqk", key * self.scale, query_pos.squeeze(1))
260
+
261
+ position_indices = self.position_indices[:query_len, :key_len].expand(batch_size, self.num_heads, -1, -1)
262
+ attention_c_p = attention_c_p.gather(3, position_indices)
263
+ attention_p_c = attention_p_c.gather(2, position_indices)
264
+
265
+ attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len)
266
+ attention_scores.add_(attention_c_p)
267
+ attention_scores.add_(attention_p_c)
268
+
269
+ return attention_scores, value
270
+
271
+ def compute_output(self, attention_probs, value):
272
+ attention_probs = self.dropout(attention_probs)
273
+ context = torch.bmm(attention_probs.flatten(0, 1), value) # shape: [B*H, Q, D]
274
+ context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size) # shape: [Q, B, H*D]
275
+ context = self.out_proj(context)
276
+ context = self.post_layer_norm(context)
277
+ context = self.dropout(context)
278
+ return context
279
+
280
+ def forward(self, hidden_states, attention_mask, relative_embedding):
281
+ attention_scores, value = self.compute_attention_scores(hidden_states, relative_embedding)
282
+ attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1)
283
+ return self.compute_output(attention_probs, value), attention_probs.detach()
284
+
285
+
286
+ class Embedding(nn.Module):
287
+ def __init__(self, config):
288
+ super().__init__()
289
+ self.hidden_size = config.hidden_size
290
+
291
+ self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
292
+ self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
293
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
294
+
295
+ self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
296
+ self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
297
+
298
+ self.initialize()
299
+
300
+ def initialize(self):
301
+ std = math.sqrt(2.0 / (5.0 * self.hidden_size))
302
+ nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std)
303
+ nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std)
304
+
305
+ def forward(self, input_ids):
306
+ word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
307
+ relative_embeddings = self.relative_layer_norm(self.relative_embedding)
308
+ return word_embedding, relative_embeddings
309
+
310
+
311
+ #
312
+ # HuggingFace wrappers
313
+ #
314
+
315
+ class LtgBertPreTrainedModel(PreTrainedModel):
316
+ """
317
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
318
+ models.
319
+ """
320
+
321
+ config_class = LtgBertConfig
322
+ base_model_prefix = "bnc-bert"
323
+ supports_gradient_checkpointing = True
324
+
325
+ def _set_gradient_checkpointing(self, module, value=False):
326
+ if isinstance(module, Encoder):
327
+ module.activation_checkpointing = value
328
+
329
+ def _init_weights(self, _):
330
+ pass # everything is already initialized
331
+
332
+
333
+ LTG_BERT_START_DOCSTRING = r"""
334
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
335
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
336
+ etc.)
337
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
338
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
339
+ and behavior.
340
+ Parameters:
341
+ config ([`LtgBertConfig`]): Model configuration class with all the parameters of the model.
342
+ Initializing with a config file does not load the weights associated with the model, only the
343
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
344
+ """
345
+
346
+ LTG_BERT_INPUTS_DOCSTRING = r"""
347
+ Args:
348
+ input_ids (`torch.LongTensor` of shape `({0})`):
349
+ Indices of input sequence tokens in the vocabulary.
350
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
351
+ [`PreTrainedTokenizer.__call__`] for details.
352
+ [What are input IDs?](../glossary#input-ids)
353
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
354
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
355
+ - 1 for tokens that are **not masked**,
356
+ - 0 for tokens that are **masked**.
357
+ [What are attention masks?](../glossary#attention-mask)
358
+ output_hidden_states (`bool`, *optional*):
359
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
360
+ more detail.
361
+ output_attentions (`bool`, *optional*):
362
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
363
+ tensors for more detail.
364
+ return_dict (`bool`, *optional*):
365
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
366
+ """
367
+
368
+
369
+ @add_start_docstrings(
370
+ "The bare LTG-BERT transformer outputting raw hidden-states without any specific head on top.",
371
+ LTG_BERT_START_DOCSTRING,
372
+ )
373
+ class LtgBertModel(LtgBertPreTrainedModel):
374
+ def __init__(self, config, add_mlm_layer=False):
375
+ super().__init__(config)
376
+ self.config = config
377
+
378
+ self.embedding = Embedding(config)
379
+ self.transformer = Encoder(config, activation_checkpointing=False)
380
+ self.classifier = MaskClassifier(config, self.embedding.word_embedding.weight) if add_mlm_layer else None
381
+
382
+ def get_input_embeddings(self):
383
+ return self.embedding.word_embedding
384
+
385
+ def set_input_embeddings(self, value):
386
+ self.embedding.word_embedding = value
387
+
388
+ def get_contextualized_embeddings(
389
+ self,
390
+ input_ids: Optional[torch.Tensor] = None,
391
+ attention_mask: Optional[torch.Tensor] = None
392
+ ) -> List[torch.Tensor]:
393
+ if input_ids is not None:
394
+ input_shape = input_ids.size()
395
+ else:
396
+ raise ValueError("You have to specify input_ids")
397
+
398
+ batch_size, seq_length = input_shape
399
+ device = input_ids.device
400
+
401
+ if attention_mask is None:
402
+ attention_mask = torch.zeros(batch_size, seq_length, dtype=torch.bool, device=device)
403
+ else:
404
+ attention_mask = ~attention_mask.bool()
405
+ attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
406
+
407
+ static_embeddings, relative_embedding = self.embedding(input_ids.t())
408
+ contextualized_embeddings, attention_probs = self.transformer(static_embeddings, attention_mask, relative_embedding)
409
+ contextualized_embeddings = [e.transpose(0, 1) for e in contextualized_embeddings]
410
+ last_layer = contextualized_embeddings[-1]
411
+ contextualized_embeddings = [contextualized_embeddings[0]] + [
412
+ contextualized_embeddings[i] - contextualized_embeddings[i - 1]
413
+ for i in range(1, len(contextualized_embeddings))
414
+ ]
415
+ return last_layer, contextualized_embeddings, attention_probs
416
+
417
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
418
+ def forward(
419
+ self,
420
+ input_ids: Optional[torch.Tensor] = None,
421
+ attention_mask: Optional[torch.Tensor] = None,
422
+ output_hidden_states: Optional[bool] = None,
423
+ output_attentions: Optional[bool] = None,
424
+ return_dict: Optional[bool] = None,
425
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
426
+
427
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
428
+ output_hidden_states = (
429
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
430
+ )
431
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
432
+
433
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
434
+
435
+ if not return_dict:
436
+ return (
437
+ sequence_output,
438
+ *([contextualized_embeddings] if output_hidden_states else []),
439
+ *([attention_probs] if output_attentions else [])
440
+ )
441
+
442
+ return BaseModelOutput(
443
+ last_hidden_state=sequence_output,
444
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
445
+ attentions=attention_probs if output_attentions else None
446
+ )
447
+
448
+
449
+ @add_start_docstrings("""LTG-BERT model with a `language modeling` head on top.""", LTG_BERT_START_DOCSTRING)
450
+ class LtgBertForMaskedLM(LtgBertModel):
451
+ _keys_to_ignore_on_load_unexpected = ["head"]
452
+
453
+ def __init__(self, config):
454
+ super().__init__(config, add_mlm_layer=True)
455
+
456
+ def get_output_embeddings(self):
457
+ return self.classifier.nonlinearity[-1].weight
458
+
459
+ def set_output_embeddings(self, new_embeddings):
460
+ self.classifier.nonlinearity[-1].weight = new_embeddings
461
+
462
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
463
+ def forward(
464
+ self,
465
+ input_ids: Optional[torch.Tensor] = None,
466
+ attention_mask: Optional[torch.Tensor] = None,
467
+ output_hidden_states: Optional[bool] = None,
468
+ output_attentions: Optional[bool] = None,
469
+ return_dict: Optional[bool] = None,
470
+ labels: Optional[torch.LongTensor] = None,
471
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
472
+ r"""
473
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
474
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
475
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
476
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
477
+ """
478
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
479
+
480
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
481
+ subword_prediction = self.classifier(sequence_output)
482
+
483
+ masked_lm_loss = None
484
+ if labels is not None:
485
+ masked_lm_loss = F.cross_entropy(subword_prediction.flatten(0, 1), labels.flatten())
486
+
487
+ if not return_dict:
488
+ output = (
489
+ subword_prediction,
490
+ *([contextualized_embeddings] if output_hidden_states else []),
491
+ *([attention_probs] if output_attentions else [])
492
+ )
493
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
494
+
495
+ return MaskedLMOutput(
496
+ loss=masked_lm_loss,
497
+ logits=subword_prediction,
498
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
499
+ attentions=attention_probs if output_attentions else None
500
+ )
501
+
502
+
503
+ class Classifier(nn.Module):
504
+ def __init__(self, config, num_labels: int):
505
+ super().__init__()
506
+
507
+ drop_out = getattr(config, "classifier_dropout", config.hidden_dropout_prob)
508
+
509
+ self.nonlinearity = nn.Sequential(
510
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
511
+ nn.Linear(config.hidden_size, config.hidden_size),
512
+ nn.GELU(),
513
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
514
+ nn.Dropout(drop_out),
515
+ nn.Linear(config.hidden_size, num_labels)
516
+ )
517
+ self.initialize(config.hidden_size)
518
+
519
+ def initialize(self, hidden_size):
520
+ std = math.sqrt(2.0 / (5.0 * hidden_size))
521
+ nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
522
+ nn.init.trunc_normal_(self.nonlinearity[-1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
523
+ self.nonlinearity[1].bias.data.zero_()
524
+ self.nonlinearity[-1].bias.data.zero_()
525
+
526
+ def forward(self, x):
527
+ x = self.nonlinearity(x)
528
+ return x
529
+
530
+
531
+ @add_start_docstrings(
532
+ """
533
+ LTG-BERT model with a sequence classification/regression head on top (a linear layer on top of the pooled
534
+ output) e.g. for GLUE tasks.
535
+ """,
536
+ LTG_BERT_START_DOCSTRING,
537
+ )
538
+ class LtgBertForSequenceClassification(LtgBertModel):
539
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
540
+ _keys_to_ignore_on_load_missing = ["head"]
541
+
542
+ def __init__(self, config):
543
+ super().__init__(config, add_mlm_layer=False)
544
+
545
+ self.num_labels = config.num_labels
546
+ self.head = Classifier(config, self.num_labels)
547
+
548
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
549
+ def forward(
550
+ self,
551
+ input_ids: Optional[torch.Tensor] = None,
552
+ attention_mask: Optional[torch.Tensor] = None,
553
+ output_attentions: Optional[bool] = None,
554
+ output_hidden_states: Optional[bool] = None,
555
+ return_dict: Optional[bool] = None,
556
+ labels: Optional[torch.LongTensor] = None,
557
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
558
+ r"""
559
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
560
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
561
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
562
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
563
+ """
564
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
565
+
566
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
567
+ logits = self.head(sequence_output[:, 0, :])
568
+
569
+ loss = None
570
+ if labels is not None:
571
+ if self.config.problem_type is None:
572
+ if self.num_labels == 1:
573
+ self.config.problem_type = "regression"
574
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
575
+ self.config.problem_type = "single_label_classification"
576
+ else:
577
+ self.config.problem_type = "multi_label_classification"
578
+
579
+ if self.config.problem_type == "regression":
580
+ loss_fct = nn.MSELoss()
581
+ if self.num_labels == 1:
582
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
583
+ else:
584
+ loss = loss_fct(logits, labels)
585
+ elif self.config.problem_type == "single_label_classification":
586
+ loss_fct = nn.CrossEntropyLoss()
587
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
588
+ elif self.config.problem_type == "multi_label_classification":
589
+ loss_fct = nn.BCEWithLogitsLoss()
590
+ loss = loss_fct(logits, labels)
591
+
592
+ if not return_dict:
593
+ output = (
594
+ logits,
595
+ *([contextualized_embeddings] if output_hidden_states else []),
596
+ *([attention_probs] if output_attentions else [])
597
+ )
598
+ return ((loss,) + output) if loss is not None else output
599
+
600
+ return SequenceClassifierOutput(
601
+ loss=loss,
602
+ logits=logits,
603
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
604
+ attentions=attention_probs if output_attentions else None
605
+ )
606
+
607
+
608
+ @add_start_docstrings(
609
+ """
610
+ LTG-BERT model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
611
+ Named-Entity-Recognition (NER) tasks.
612
+ """,
613
+ LTG_BERT_START_DOCSTRING,
614
+ )
615
+ class LtgBertForTokenClassification(LtgBertModel):
616
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
617
+ _keys_to_ignore_on_load_missing = ["head"]
618
+
619
+ def __init__(self, config):
620
+ super().__init__(config, add_mlm_layer=False)
621
+
622
+ self.num_labels = config.num_labels
623
+ self.head = Classifier(config, self.num_labels)
624
+
625
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
626
+ def forward(
627
+ self,
628
+ input_ids: Optional[torch.Tensor] = None,
629
+ attention_mask: Optional[torch.Tensor] = None,
630
+ token_type_ids: Optional[torch.Tensor] = None,
631
+ position_ids: Optional[torch.Tensor] = None,
632
+ output_attentions: Optional[bool] = None,
633
+ output_hidden_states: Optional[bool] = None,
634
+ return_dict: Optional[bool] = None,
635
+ labels: Optional[torch.LongTensor] = None,
636
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
637
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
638
+
639
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
640
+ logits = self.head(sequence_output)
641
+
642
+ loss = None
643
+ if labels is not None:
644
+ loss_fct = nn.CrossEntropyLoss()
645
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
646
+
647
+ if not return_dict:
648
+ output = (
649
+ logits,
650
+ *([contextualized_embeddings] if output_hidden_states else []),
651
+ *([attention_probs] if output_attentions else [])
652
+ )
653
+ return ((loss,) + output) if loss is not None else output
654
+
655
+ return TokenClassifierOutput(
656
+ loss=loss,
657
+ logits=logits,
658
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
659
+ attentions=attention_probs if output_attentions else None
660
+ )
661
+
662
+
663
+ @add_start_docstrings(
664
+ """
665
+ LTG-BERT model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
666
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
667
+ """,
668
+ LTG_BERT_START_DOCSTRING,
669
+ )
670
+ class LtgBertForQuestionAnswering(LtgBertModel):
671
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
672
+ _keys_to_ignore_on_load_missing = ["head"]
673
+
674
+ def __init__(self, config):
675
+ super().__init__(config, add_mlm_layer=False)
676
+
677
+ self.num_labels = config.num_labels
678
+ self.head = Classifier(config, self.num_labels)
679
+
680
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
681
+ def forward(
682
+ self,
683
+ input_ids: Optional[torch.Tensor] = None,
684
+ attention_mask: Optional[torch.Tensor] = None,
685
+ token_type_ids: Optional[torch.Tensor] = None,
686
+ position_ids: Optional[torch.Tensor] = None,
687
+ output_attentions: Optional[bool] = None,
688
+ output_hidden_states: Optional[bool] = None,
689
+ return_dict: Optional[bool] = None,
690
+ start_positions: Optional[torch.Tensor] = None,
691
+ end_positions: Optional[torch.Tensor] = None
692
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
693
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
694
+
695
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
696
+ logits = self.head(sequence_output)
697
+
698
+ start_logits, end_logits = logits.split(1, dim=-1)
699
+ start_logits = start_logits.squeeze(-1).contiguous()
700
+ end_logits = end_logits.squeeze(-1).contiguous()
701
+
702
+ total_loss = None
703
+ if start_positions is not None and end_positions is not None:
704
+ # If we are on multi-GPU, split add a dimension
705
+ if len(start_positions.size()) > 1:
706
+ start_positions = start_positions.squeeze(-1)
707
+ if len(end_positions.size()) > 1:
708
+ end_positions = end_positions.squeeze(-1)
709
+
710
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
711
+ ignored_index = start_logits.size(1)
712
+ start_positions = start_positions.clamp(0, ignored_index)
713
+ end_positions = end_positions.clamp(0, ignored_index)
714
+
715
+ loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
716
+ start_loss = loss_fct(start_logits, start_positions)
717
+ end_loss = loss_fct(end_logits, end_positions)
718
+ total_loss = (start_loss + end_loss) / 2
719
+
720
+ if not return_dict:
721
+ output = (
722
+ start_logits,
723
+ end_logits,
724
+ *([contextualized_embeddings] if output_hidden_states else []),
725
+ *([attention_probs] if output_attentions else [])
726
+ )
727
+ return ((total_loss,) + output) if total_loss is not None else output
728
+
729
+ return QuestionAnsweringModelOutput(
730
+ loss=total_loss,
731
+ start_logits=start_logits,
732
+ end_logits=end_logits,
733
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
734
+ attentions=attention_probs if output_attentions else None
735
+ )
736
+
737
+
738
+ @add_start_docstrings(
739
+ """
740
+ LTG-BERT model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
741
+ softmax) e.g. for RocStories/SWAG tasks.
742
+ """,
743
+ LTG_BERT_START_DOCSTRING,
744
+ )
745
+ class LtgBertForMultipleChoice(LtgBertModel):
746
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
747
+ _keys_to_ignore_on_load_missing = ["head"]
748
+
749
+ def __init__(self, config):
750
+ super().__init__(config, add_mlm_layer=False)
751
+
752
+ self.num_labels = getattr(config, "num_labels", 2)
753
+ self.head = Classifier(config, self.num_labels)
754
+
755
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
756
+ def forward(
757
+ self,
758
+ input_ids: Optional[torch.Tensor] = None,
759
+ attention_mask: Optional[torch.Tensor] = None,
760
+ token_type_ids: Optional[torch.Tensor] = None,
761
+ position_ids: Optional[torch.Tensor] = None,
762
+ labels: Optional[torch.Tensor] = None,
763
+ output_attentions: Optional[bool] = None,
764
+ output_hidden_states: Optional[bool] = None,
765
+ return_dict: Optional[bool] = None
766
+ ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
767
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
768
+ num_choices = input_ids.shape[1]
769
+
770
+ flat_input_ids = input_ids.view(-1, input_ids.size(-1))
771
+ flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
772
+
773
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(flat_input_ids, flat_attention_mask)
774
+ logits = self.head(sequence_output)
775
+ reshaped_logits = logits.view(-1, num_choices)
776
+
777
+ loss = None
778
+ if labels is not None:
779
+ loss_fct = nn.CrossEntropyLoss()
780
+ loss = loss_fct(reshaped_logits, labels)
781
+
782
+ if not return_dict:
783
+ output = (
784
+ reshaped_logits,
785
+ *([contextualized_embeddings] if output_hidden_states else []),
786
+ *([attention_probs] if output_attentions else [])
787
+ )
788
+ return ((loss,) + output) if loss is not None else output
789
+
790
+ return MultipleChoiceModelOutput(
791
+ loss=loss,
792
+ logits=reshaped_logits,
793
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
794
+ attentions=attention_probs if output_attentions else None
795
+ )
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b8d6ac85c1cd6a7df8267b75b1b1403372ca61eb3b267ec3a41f160ab19aad6
3
+ size 418142073
special_tokens_map.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[BOS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[EOS]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": "[UNK]"
9
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "model_max_length": 1000000000000000019884624838656,
3
+ "tokenizer_class": "PreTrainedTokenizerFast"
4
+ }