Update modeling_norbert.py
Browse files- modeling_norbert.py +5 -5
modeling_norbert.py
CHANGED
@@ -140,9 +140,9 @@ class Attention(nn.Module):
|
|
140 |
|
141 |
position_indices = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \
|
142 |
- torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0)
|
143 |
-
position_indices = self.make_log_bucket_position(position_indices, config.
|
144 |
-
position_indices = config.
|
145 |
-
self.register_buffer("position_indices", position_indices, persistent=
|
146 |
|
147 |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
148 |
self.scale = 1.0 / math.sqrt(3 * self.head_size)
|
@@ -162,8 +162,8 @@ class Attention(nn.Module):
|
|
162 |
if self.position_indices.size(0) < query_len:
|
163 |
position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \
|
164 |
- torch.arange(query_len, dtype=torch.long).unsqueeze(0)
|
165 |
-
position_indices = self.make_log_bucket_position(position_indices, self.position_bucket_size, 512)
|
166 |
-
position_indices = self.position_bucket_size - 1 + position_indices
|
167 |
self.position_indices = position_indices.to(hidden_states.device)
|
168 |
|
169 |
hidden_states = self.pre_layer_norm(hidden_states)
|
|
|
140 |
|
141 |
position_indices = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \
|
142 |
- torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0)
|
143 |
+
position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings)
|
144 |
+
position_indices = config.position_bucket_size - 1 + position_indices
|
145 |
+
self.register_buffer("position_indices", position_indices, persistent=False)
|
146 |
|
147 |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
148 |
self.scale = 1.0 / math.sqrt(3 * self.head_size)
|
|
|
162 |
if self.position_indices.size(0) < query_len:
|
163 |
position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \
|
164 |
- torch.arange(query_len, dtype=torch.long).unsqueeze(0)
|
165 |
+
position_indices = self.make_log_bucket_position(position_indices, self.config.position_bucket_size, 512)
|
166 |
+
position_indices = self.config.position_bucket_size - 1 + position_indices
|
167 |
self.position_indices = position_indices.to(hidden_states.device)
|
168 |
|
169 |
hidden_states = self.pre_layer_norm(hidden_states)
|