luanafelbarros
commited on
Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +672 -0
- config.json +31 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +55 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,672 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:234000
|
8 |
+
- loss:MSELoss
|
9 |
+
base_model: google-bert/bert-base-multilingual-uncased
|
10 |
+
widget:
|
11 |
+
- source_sentence: who sings in spite of ourselves with john prine
|
12 |
+
sentences:
|
13 |
+
- es
|
14 |
+
- når ble michael jordan draftet til nba
|
15 |
+
- quien canta en spite of ourselves con john prine
|
16 |
+
- source_sentence: who wrote when you look me in the eyes
|
17 |
+
sentences:
|
18 |
+
- متى بدأت الفتاة الكشفية في بيع ملفات تعريف الارتباط
|
19 |
+
- A écrit when you look me in the eyes
|
20 |
+
- fr
|
21 |
+
- source_sentence: when was fathers day made a national holiday
|
22 |
+
sentences:
|
23 |
+
- wann wurde der Vatertag zum nationalen Feiertag
|
24 |
+
- de
|
25 |
+
- ' អ្នកណាច្រៀង i want to sing you a love song'
|
26 |
+
- source_sentence: what is the density of the continental crust
|
27 |
+
sentences:
|
28 |
+
- cuál es la densidad de la corteza continental
|
29 |
+
- wie zingt i want to sing you a love song
|
30 |
+
- es
|
31 |
+
- source_sentence: who wrote the song i shot the sheriff
|
32 |
+
sentences:
|
33 |
+
- Quel est l'âge légal pour consommer du vin au Canada?
|
34 |
+
- i shot the sheriff şarkısını kim besteledi
|
35 |
+
- tr
|
36 |
+
pipeline_tag: sentence-similarity
|
37 |
+
library_name: sentence-transformers
|
38 |
+
metrics:
|
39 |
+
- negative_mse
|
40 |
+
model-index:
|
41 |
+
- name: SentenceTransformer based on google-bert/bert-base-multilingual-uncased
|
42 |
+
results:
|
43 |
+
- task:
|
44 |
+
type: knowledge-distillation
|
45 |
+
name: Knowledge Distillation
|
46 |
+
dataset:
|
47 |
+
name: MSE val en to ar
|
48 |
+
type: MSE-val-en-to-ar
|
49 |
+
metrics:
|
50 |
+
- type: negative_mse
|
51 |
+
value: -20.37721574306488
|
52 |
+
name: Negative Mse
|
53 |
+
- task:
|
54 |
+
type: knowledge-distillation
|
55 |
+
name: Knowledge Distillation
|
56 |
+
dataset:
|
57 |
+
name: MSE val en to da
|
58 |
+
type: MSE-val-en-to-da
|
59 |
+
metrics:
|
60 |
+
- type: negative_mse
|
61 |
+
value: -17.167489230632782
|
62 |
+
name: Negative Mse
|
63 |
+
- task:
|
64 |
+
type: knowledge-distillation
|
65 |
+
name: Knowledge Distillation
|
66 |
+
dataset:
|
67 |
+
name: MSE val en to de
|
68 |
+
type: MSE-val-en-to-de
|
69 |
+
metrics:
|
70 |
+
- type: negative_mse
|
71 |
+
value: -17.10948944091797
|
72 |
+
name: Negative Mse
|
73 |
+
- task:
|
74 |
+
type: knowledge-distillation
|
75 |
+
name: Knowledge Distillation
|
76 |
+
dataset:
|
77 |
+
name: MSE val en to en
|
78 |
+
type: MSE-val-en-to-en
|
79 |
+
metrics:
|
80 |
+
- type: negative_mse
|
81 |
+
value: -15.333698689937592
|
82 |
+
name: Negative Mse
|
83 |
+
- task:
|
84 |
+
type: knowledge-distillation
|
85 |
+
name: Knowledge Distillation
|
86 |
+
dataset:
|
87 |
+
name: MSE val en to es
|
88 |
+
type: MSE-val-en-to-es
|
89 |
+
metrics:
|
90 |
+
- type: negative_mse
|
91 |
+
value: -16.898061335086823
|
92 |
+
name: Negative Mse
|
93 |
+
- task:
|
94 |
+
type: knowledge-distillation
|
95 |
+
name: Knowledge Distillation
|
96 |
+
dataset:
|
97 |
+
name: MSE val en to fi
|
98 |
+
type: MSE-val-en-to-fi
|
99 |
+
metrics:
|
100 |
+
- type: negative_mse
|
101 |
+
value: -18.428558111190796
|
102 |
+
name: Negative Mse
|
103 |
+
- task:
|
104 |
+
type: knowledge-distillation
|
105 |
+
name: Knowledge Distillation
|
106 |
+
dataset:
|
107 |
+
name: MSE val en to fr
|
108 |
+
type: MSE-val-en-to-fr
|
109 |
+
metrics:
|
110 |
+
- type: negative_mse
|
111 |
+
value: -17.04207956790924
|
112 |
+
name: Negative Mse
|
113 |
+
- task:
|
114 |
+
type: knowledge-distillation
|
115 |
+
name: Knowledge Distillation
|
116 |
+
dataset:
|
117 |
+
name: MSE val en to he
|
118 |
+
type: MSE-val-en-to-he
|
119 |
+
metrics:
|
120 |
+
- type: negative_mse
|
121 |
+
value: -19.942057132720947
|
122 |
+
name: Negative Mse
|
123 |
+
- task:
|
124 |
+
type: knowledge-distillation
|
125 |
+
name: Knowledge Distillation
|
126 |
+
dataset:
|
127 |
+
name: MSE val en to hu
|
128 |
+
type: MSE-val-en-to-hu
|
129 |
+
metrics:
|
130 |
+
- type: negative_mse
|
131 |
+
value: -18.757066130638123
|
132 |
+
name: Negative Mse
|
133 |
+
- task:
|
134 |
+
type: knowledge-distillation
|
135 |
+
name: Knowledge Distillation
|
136 |
+
dataset:
|
137 |
+
name: MSE val en to it
|
138 |
+
type: MSE-val-en-to-it
|
139 |
+
metrics:
|
140 |
+
- type: negative_mse
|
141 |
+
value: -17.18708872795105
|
142 |
+
name: Negative Mse
|
143 |
+
- task:
|
144 |
+
type: knowledge-distillation
|
145 |
+
name: Knowledge Distillation
|
146 |
+
dataset:
|
147 |
+
name: MSE val en to ja
|
148 |
+
type: MSE-val-en-to-ja
|
149 |
+
metrics:
|
150 |
+
- type: negative_mse
|
151 |
+
value: -19.915536046028137
|
152 |
+
name: Negative Mse
|
153 |
+
- task:
|
154 |
+
type: knowledge-distillation
|
155 |
+
name: Knowledge Distillation
|
156 |
+
dataset:
|
157 |
+
name: MSE val en to ko
|
158 |
+
type: MSE-val-en-to-ko
|
159 |
+
metrics:
|
160 |
+
- type: negative_mse
|
161 |
+
value: -21.39919400215149
|
162 |
+
name: Negative Mse
|
163 |
+
- task:
|
164 |
+
type: knowledge-distillation
|
165 |
+
name: Knowledge Distillation
|
166 |
+
dataset:
|
167 |
+
name: MSE val en to km
|
168 |
+
type: MSE-val-en-to-km
|
169 |
+
metrics:
|
170 |
+
- type: negative_mse
|
171 |
+
value: -28.658682107925415
|
172 |
+
name: Negative Mse
|
173 |
+
- task:
|
174 |
+
type: knowledge-distillation
|
175 |
+
name: Knowledge Distillation
|
176 |
+
dataset:
|
177 |
+
name: MSE val en to ms
|
178 |
+
type: MSE-val-en-to-ms
|
179 |
+
metrics:
|
180 |
+
- type: negative_mse
|
181 |
+
value: -17.25209951400757
|
182 |
+
name: Negative Mse
|
183 |
+
- task:
|
184 |
+
type: knowledge-distillation
|
185 |
+
name: Knowledge Distillation
|
186 |
+
dataset:
|
187 |
+
name: MSE val en to nl
|
188 |
+
type: MSE-val-en-to-nl
|
189 |
+
metrics:
|
190 |
+
- type: negative_mse
|
191 |
+
value: -16.605134308338165
|
192 |
+
name: Negative Mse
|
193 |
+
- task:
|
194 |
+
type: knowledge-distillation
|
195 |
+
name: Knowledge Distillation
|
196 |
+
dataset:
|
197 |
+
name: MSE val en to no
|
198 |
+
type: MSE-val-en-to-no
|
199 |
+
metrics:
|
200 |
+
- type: negative_mse
|
201 |
+
value: -17.149969935417175
|
202 |
+
name: Negative Mse
|
203 |
+
- task:
|
204 |
+
type: knowledge-distillation
|
205 |
+
name: Knowledge Distillation
|
206 |
+
dataset:
|
207 |
+
name: MSE val en to pl
|
208 |
+
type: MSE-val-en-to-pl
|
209 |
+
metrics:
|
210 |
+
- type: negative_mse
|
211 |
+
value: -17.846450209617615
|
212 |
+
name: Negative Mse
|
213 |
+
- task:
|
214 |
+
type: knowledge-distillation
|
215 |
+
name: Knowledge Distillation
|
216 |
+
dataset:
|
217 |
+
name: MSE val en to pt
|
218 |
+
type: MSE-val-en-to-pt
|
219 |
+
metrics:
|
220 |
+
- type: negative_mse
|
221 |
+
value: -17.19353199005127
|
222 |
+
name: Negative Mse
|
223 |
+
- task:
|
224 |
+
type: knowledge-distillation
|
225 |
+
name: Knowledge Distillation
|
226 |
+
dataset:
|
227 |
+
name: MSE val en to ru
|
228 |
+
type: MSE-val-en-to-ru
|
229 |
+
metrics:
|
230 |
+
- type: negative_mse
|
231 |
+
value: -18.13419610261917
|
232 |
+
name: Negative Mse
|
233 |
+
- task:
|
234 |
+
type: knowledge-distillation
|
235 |
+
name: Knowledge Distillation
|
236 |
+
dataset:
|
237 |
+
name: MSE val en to sv
|
238 |
+
type: MSE-val-en-to-sv
|
239 |
+
metrics:
|
240 |
+
- type: negative_mse
|
241 |
+
value: -17.13200956583023
|
242 |
+
name: Negative Mse
|
243 |
+
- task:
|
244 |
+
type: knowledge-distillation
|
245 |
+
name: Knowledge Distillation
|
246 |
+
dataset:
|
247 |
+
name: MSE val en to th
|
248 |
+
type: MSE-val-en-to-th
|
249 |
+
metrics:
|
250 |
+
- type: negative_mse
|
251 |
+
value: -26.43084228038788
|
252 |
+
name: Negative Mse
|
253 |
+
- task:
|
254 |
+
type: knowledge-distillation
|
255 |
+
name: Knowledge Distillation
|
256 |
+
dataset:
|
257 |
+
name: MSE val en to tr
|
258 |
+
type: MSE-val-en-to-tr
|
259 |
+
metrics:
|
260 |
+
- type: negative_mse
|
261 |
+
value: -18.183308839797974
|
262 |
+
name: Negative Mse
|
263 |
+
- task:
|
264 |
+
type: knowledge-distillation
|
265 |
+
name: Knowledge Distillation
|
266 |
+
dataset:
|
267 |
+
name: MSE val en to vi
|
268 |
+
type: MSE-val-en-to-vi
|
269 |
+
metrics:
|
270 |
+
- type: negative_mse
|
271 |
+
value: -18.749597668647766
|
272 |
+
name: Negative Mse
|
273 |
+
- task:
|
274 |
+
type: knowledge-distillation
|
275 |
+
name: Knowledge Distillation
|
276 |
+
dataset:
|
277 |
+
name: MSE val en to zh cn
|
278 |
+
type: MSE-val-en-to-zh_cn
|
279 |
+
metrics:
|
280 |
+
- type: negative_mse
|
281 |
+
value: -18.811793625354767
|
282 |
+
name: Negative Mse
|
283 |
+
- task:
|
284 |
+
type: knowledge-distillation
|
285 |
+
name: Knowledge Distillation
|
286 |
+
dataset:
|
287 |
+
name: MSE val en to zh hk
|
288 |
+
type: MSE-val-en-to-zh_hk
|
289 |
+
metrics:
|
290 |
+
- type: negative_mse
|
291 |
+
value: -18.54081153869629
|
292 |
+
name: Negative Mse
|
293 |
+
- task:
|
294 |
+
type: knowledge-distillation
|
295 |
+
name: Knowledge Distillation
|
296 |
+
dataset:
|
297 |
+
name: MSE val en to zh tw
|
298 |
+
type: MSE-val-en-to-zh_tw
|
299 |
+
metrics:
|
300 |
+
- type: negative_mse
|
301 |
+
value: -19.14038509130478
|
302 |
+
name: Negative Mse
|
303 |
+
---
|
304 |
+
|
305 |
+
# SentenceTransformer based on google-bert/bert-base-multilingual-uncased
|
306 |
+
|
307 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
308 |
+
|
309 |
+
## Model Details
|
310 |
+
|
311 |
+
### Model Description
|
312 |
+
- **Model Type:** Sentence Transformer
|
313 |
+
- **Base model:** [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) <!-- at revision 7cbf9a625e29989f6b9c6c2fa68234c304f7e38f -->
|
314 |
+
- **Maximum Sequence Length:** 128 tokens
|
315 |
+
- **Output Dimensionality:** 768 dimensions
|
316 |
+
- **Similarity Function:** Cosine Similarity
|
317 |
+
<!-- - **Training Dataset:** Unknown -->
|
318 |
+
<!-- - **Language:** Unknown -->
|
319 |
+
<!-- - **License:** Unknown -->
|
320 |
+
|
321 |
+
### Model Sources
|
322 |
+
|
323 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
324 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
325 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
326 |
+
|
327 |
+
### Full Model Architecture
|
328 |
+
|
329 |
+
```
|
330 |
+
SentenceTransformer(
|
331 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
332 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
333 |
+
)
|
334 |
+
```
|
335 |
+
|
336 |
+
## Usage
|
337 |
+
|
338 |
+
### Direct Usage (Sentence Transformers)
|
339 |
+
|
340 |
+
First install the Sentence Transformers library:
|
341 |
+
|
342 |
+
```bash
|
343 |
+
pip install -U sentence-transformers
|
344 |
+
```
|
345 |
+
|
346 |
+
Then you can load this model and run inference.
|
347 |
+
```python
|
348 |
+
from sentence_transformers import SentenceTransformer
|
349 |
+
|
350 |
+
# Download from the 🤗 Hub
|
351 |
+
model = SentenceTransformer("luanafelbarros/bert-base-multilingual-uncased-matryoshka-mkqa")
|
352 |
+
# Run inference
|
353 |
+
sentences = [
|
354 |
+
'who wrote the song i shot the sheriff',
|
355 |
+
'i shot the sheriff şarkısını kim besteledi',
|
356 |
+
'tr',
|
357 |
+
]
|
358 |
+
embeddings = model.encode(sentences)
|
359 |
+
print(embeddings.shape)
|
360 |
+
# [3, 768]
|
361 |
+
|
362 |
+
# Get the similarity scores for the embeddings
|
363 |
+
similarities = model.similarity(embeddings, embeddings)
|
364 |
+
print(similarities.shape)
|
365 |
+
# [3, 3]
|
366 |
+
```
|
367 |
+
|
368 |
+
<!--
|
369 |
+
### Direct Usage (Transformers)
|
370 |
+
|
371 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
372 |
+
|
373 |
+
</details>
|
374 |
+
-->
|
375 |
+
|
376 |
+
<!--
|
377 |
+
### Downstream Usage (Sentence Transformers)
|
378 |
+
|
379 |
+
You can finetune this model on your own dataset.
|
380 |
+
|
381 |
+
<details><summary>Click to expand</summary>
|
382 |
+
|
383 |
+
</details>
|
384 |
+
-->
|
385 |
+
|
386 |
+
<!--
|
387 |
+
### Out-of-Scope Use
|
388 |
+
|
389 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
390 |
+
-->
|
391 |
+
|
392 |
+
## Evaluation
|
393 |
+
|
394 |
+
### Metrics
|
395 |
+
|
396 |
+
#### Knowledge Distillation
|
397 |
+
|
398 |
+
* Datasets: `MSE-val-en-to-ar`, `MSE-val-en-to-da`, `MSE-val-en-to-de`, `MSE-val-en-to-en`, `MSE-val-en-to-es`, `MSE-val-en-to-fi`, `MSE-val-en-to-fr`, `MSE-val-en-to-he`, `MSE-val-en-to-hu`, `MSE-val-en-to-it`, `MSE-val-en-to-ja`, `MSE-val-en-to-ko`, `MSE-val-en-to-km`, `MSE-val-en-to-ms`, `MSE-val-en-to-nl`, `MSE-val-en-to-no`, `MSE-val-en-to-pl`, `MSE-val-en-to-pt`, `MSE-val-en-to-ru`, `MSE-val-en-to-sv`, `MSE-val-en-to-th`, `MSE-val-en-to-tr`, `MSE-val-en-to-vi`, `MSE-val-en-to-zh_cn`, `MSE-val-en-to-zh_hk` and `MSE-val-en-to-zh_tw`
|
399 |
+
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
|
400 |
+
|
401 |
+
| Metric | MSE-val-en-to-ar | MSE-val-en-to-da | MSE-val-en-to-de | MSE-val-en-to-en | MSE-val-en-to-es | MSE-val-en-to-fi | MSE-val-en-to-fr | MSE-val-en-to-he | MSE-val-en-to-hu | MSE-val-en-to-it | MSE-val-en-to-ja | MSE-val-en-to-ko | MSE-val-en-to-km | MSE-val-en-to-ms | MSE-val-en-to-nl | MSE-val-en-to-no | MSE-val-en-to-pl | MSE-val-en-to-pt | MSE-val-en-to-ru | MSE-val-en-to-sv | MSE-val-en-to-th | MSE-val-en-to-tr | MSE-val-en-to-vi | MSE-val-en-to-zh_cn | MSE-val-en-to-zh_hk | MSE-val-en-to-zh_tw |
|
402 |
+
|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:--------------------|:--------------------|:--------------------|
|
403 |
+
| **negative_mse** | **-20.3772** | **-17.1675** | **-17.1095** | **-15.3337** | **-16.8981** | **-18.4286** | **-17.0421** | **-19.9421** | **-18.7571** | **-17.1871** | **-19.9155** | **-21.3992** | **-28.6587** | **-17.2521** | **-16.6051** | **-17.15** | **-17.8465** | **-17.1935** | **-18.1342** | **-17.132** | **-26.4308** | **-18.1833** | **-18.7496** | **-18.8118** | **-18.5408** | **-19.1404** |
|
404 |
+
|
405 |
+
<!--
|
406 |
+
## Bias, Risks and Limitations
|
407 |
+
|
408 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
409 |
+
-->
|
410 |
+
|
411 |
+
<!--
|
412 |
+
### Recommendations
|
413 |
+
|
414 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
415 |
+
-->
|
416 |
+
|
417 |
+
## Training Details
|
418 |
+
|
419 |
+
### Training Dataset
|
420 |
+
|
421 |
+
#### Unnamed Dataset
|
422 |
+
|
423 |
+
|
424 |
+
* Size: 234,000 training samples
|
425 |
+
* Columns: <code>english</code>, <code>non-english</code>, <code>target</code>, and <code>label</code>
|
426 |
+
* Approximate statistics based on the first 1000 samples:
|
427 |
+
| | english | non-english | target | label |
|
428 |
+
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-------------------------------------|
|
429 |
+
| type | string | string | string | list |
|
430 |
+
| details | <ul><li>min: 10 tokens</li><li>mean: 11.48 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 13.27 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.38 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
431 |
+
* Samples:
|
432 |
+
| english | non-english | target | label |
|
433 |
+
|:-------------------------------------------------|:--------------------------------------------------------|:----------------|:------------------------------------------------------------------------------------------------------------------------|
|
434 |
+
| <code>who plays hope on days of our lives</code> | <code>من الذي يلعب الأمل في أيام حياتنا</code> | <code>ar</code> | <code>[0.2171212136745453, 0.5138550996780396, 0.5517176389694214, -1.0655105113983154, 1.5853567123413086, ...]</code> |
|
435 |
+
| <code>who plays hope on days of our lives</code> | <code>hvem spiller hope i Horton-sagaen</code> | <code>da</code> | <code>[0.2171212136745453, 0.5138550996780396, 0.5517176389694214, -1.0655105113983154, 1.5853567123413086, ...]</code> |
|
436 |
+
| <code>who plays hope on days of our lives</code> | <code>Wer spielt die Hope in Zeit der Sehnsucht?</code> | <code>de</code> | <code>[0.2171212136745453, 0.5138550996780396, 0.5517176389694214, -1.0655105113983154, 1.5853567123413086, ...]</code> |
|
437 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
438 |
+
|
439 |
+
### Evaluation Dataset
|
440 |
+
|
441 |
+
#### Unnamed Dataset
|
442 |
+
|
443 |
+
|
444 |
+
* Size: 13,000 evaluation samples
|
445 |
+
* Columns: <code>english</code>, <code>non-english</code>, <code>target</code>, and <code>label</code>
|
446 |
+
* Approximate statistics based on the first 1000 samples:
|
447 |
+
| | english | non-english | target | label |
|
448 |
+
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-------------------------------------|
|
449 |
+
| type | string | string | string | list |
|
450 |
+
| details | <ul><li>min: 10 tokens</li><li>mean: 11.53 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 13.37 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.38 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
451 |
+
* Samples:
|
452 |
+
| english | non-english | target | label |
|
453 |
+
|:------------------------------------------------------------|:----------------------------------------------------------------|:----------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
454 |
+
| <code>who played prudence on nanny and the professor</code> | <code>من لعب دور "prudence" فى "nanny and the professor"</code> | <code>ar</code> | <code>[-0.2837616801261902, -0.4943353235721588, 0.020107418298721313, 0.7796109318733215, -0.47365888953208923, ...]</code> |
|
455 |
+
| <code>who played prudence on nanny and the professor</code> | <code>hvem spiller prudence på nanny and the professor</code> | <code>da</code> | <code>[-0.2837616801261902, -0.4943353235721588, 0.020107418298721313, 0.7796109318733215, -0.47365888953208923, ...]</code> |
|
456 |
+
| <code>who played prudence on nanny and the professor</code> | <code>Wer spielte Prudence in Nanny and the Professor</code> | <code>de</code> | <code>[-0.2837616801261902, -0.4943353235721588, 0.020107418298721313, 0.7796109318733215, -0.47365888953208923, ...]</code> |
|
457 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
458 |
+
|
459 |
+
### Training Hyperparameters
|
460 |
+
#### Non-Default Hyperparameters
|
461 |
+
|
462 |
+
- `eval_strategy`: steps
|
463 |
+
- `per_device_train_batch_size`: 64
|
464 |
+
- `per_device_eval_batch_size`: 64
|
465 |
+
- `learning_rate`: 1e-05
|
466 |
+
- `num_train_epochs`: 1
|
467 |
+
- `warmup_ratio`: 0.1
|
468 |
+
- `fp16`: True
|
469 |
+
|
470 |
+
#### All Hyperparameters
|
471 |
+
<details><summary>Click to expand</summary>
|
472 |
+
|
473 |
+
- `overwrite_output_dir`: False
|
474 |
+
- `do_predict`: False
|
475 |
+
- `eval_strategy`: steps
|
476 |
+
- `prediction_loss_only`: True
|
477 |
+
- `per_device_train_batch_size`: 64
|
478 |
+
- `per_device_eval_batch_size`: 64
|
479 |
+
- `per_gpu_train_batch_size`: None
|
480 |
+
- `per_gpu_eval_batch_size`: None
|
481 |
+
- `gradient_accumulation_steps`: 1
|
482 |
+
- `eval_accumulation_steps`: None
|
483 |
+
- `torch_empty_cache_steps`: None
|
484 |
+
- `learning_rate`: 1e-05
|
485 |
+
- `weight_decay`: 0.0
|
486 |
+
- `adam_beta1`: 0.9
|
487 |
+
- `adam_beta2`: 0.999
|
488 |
+
- `adam_epsilon`: 1e-08
|
489 |
+
- `max_grad_norm`: 1.0
|
490 |
+
- `num_train_epochs`: 1
|
491 |
+
- `max_steps`: -1
|
492 |
+
- `lr_scheduler_type`: linear
|
493 |
+
- `lr_scheduler_kwargs`: {}
|
494 |
+
- `warmup_ratio`: 0.1
|
495 |
+
- `warmup_steps`: 0
|
496 |
+
- `log_level`: passive
|
497 |
+
- `log_level_replica`: warning
|
498 |
+
- `log_on_each_node`: True
|
499 |
+
- `logging_nan_inf_filter`: True
|
500 |
+
- `save_safetensors`: True
|
501 |
+
- `save_on_each_node`: False
|
502 |
+
- `save_only_model`: False
|
503 |
+
- `restore_callback_states_from_checkpoint`: False
|
504 |
+
- `no_cuda`: False
|
505 |
+
- `use_cpu`: False
|
506 |
+
- `use_mps_device`: False
|
507 |
+
- `seed`: 42
|
508 |
+
- `data_seed`: None
|
509 |
+
- `jit_mode_eval`: False
|
510 |
+
- `use_ipex`: False
|
511 |
+
- `bf16`: False
|
512 |
+
- `fp16`: True
|
513 |
+
- `fp16_opt_level`: O1
|
514 |
+
- `half_precision_backend`: auto
|
515 |
+
- `bf16_full_eval`: False
|
516 |
+
- `fp16_full_eval`: False
|
517 |
+
- `tf32`: None
|
518 |
+
- `local_rank`: 0
|
519 |
+
- `ddp_backend`: None
|
520 |
+
- `tpu_num_cores`: None
|
521 |
+
- `tpu_metrics_debug`: False
|
522 |
+
- `debug`: []
|
523 |
+
- `dataloader_drop_last`: False
|
524 |
+
- `dataloader_num_workers`: 0
|
525 |
+
- `dataloader_prefetch_factor`: None
|
526 |
+
- `past_index`: -1
|
527 |
+
- `disable_tqdm`: False
|
528 |
+
- `remove_unused_columns`: True
|
529 |
+
- `label_names`: None
|
530 |
+
- `load_best_model_at_end`: False
|
531 |
+
- `ignore_data_skip`: False
|
532 |
+
- `fsdp`: []
|
533 |
+
- `fsdp_min_num_params`: 0
|
534 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
535 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
536 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
537 |
+
- `deepspeed`: None
|
538 |
+
- `label_smoothing_factor`: 0.0
|
539 |
+
- `optim`: adamw_torch
|
540 |
+
- `optim_args`: None
|
541 |
+
- `adafactor`: False
|
542 |
+
- `group_by_length`: False
|
543 |
+
- `length_column_name`: length
|
544 |
+
- `ddp_find_unused_parameters`: None
|
545 |
+
- `ddp_bucket_cap_mb`: None
|
546 |
+
- `ddp_broadcast_buffers`: False
|
547 |
+
- `dataloader_pin_memory`: True
|
548 |
+
- `dataloader_persistent_workers`: False
|
549 |
+
- `skip_memory_metrics`: True
|
550 |
+
- `use_legacy_prediction_loop`: False
|
551 |
+
- `push_to_hub`: False
|
552 |
+
- `resume_from_checkpoint`: None
|
553 |
+
- `hub_model_id`: None
|
554 |
+
- `hub_strategy`: every_save
|
555 |
+
- `hub_private_repo`: False
|
556 |
+
- `hub_always_push`: False
|
557 |
+
- `gradient_checkpointing`: False
|
558 |
+
- `gradient_checkpointing_kwargs`: None
|
559 |
+
- `include_inputs_for_metrics`: False
|
560 |
+
- `include_for_metrics`: []
|
561 |
+
- `eval_do_concat_batches`: True
|
562 |
+
- `fp16_backend`: auto
|
563 |
+
- `push_to_hub_model_id`: None
|
564 |
+
- `push_to_hub_organization`: None
|
565 |
+
- `mp_parameters`:
|
566 |
+
- `auto_find_batch_size`: False
|
567 |
+
- `full_determinism`: False
|
568 |
+
- `torchdynamo`: None
|
569 |
+
- `ray_scope`: last
|
570 |
+
- `ddp_timeout`: 1800
|
571 |
+
- `torch_compile`: False
|
572 |
+
- `torch_compile_backend`: None
|
573 |
+
- `torch_compile_mode`: None
|
574 |
+
- `dispatch_batches`: None
|
575 |
+
- `split_batches`: None
|
576 |
+
- `include_tokens_per_second`: False
|
577 |
+
- `include_num_input_tokens_seen`: False
|
578 |
+
- `neftune_noise_alpha`: None
|
579 |
+
- `optim_target_modules`: None
|
580 |
+
- `batch_eval_metrics`: False
|
581 |
+
- `eval_on_start`: False
|
582 |
+
- `use_liger_kernel`: False
|
583 |
+
- `eval_use_gather_object`: False
|
584 |
+
- `average_tokens_across_devices`: False
|
585 |
+
- `prompts`: None
|
586 |
+
- `batch_sampler`: batch_sampler
|
587 |
+
- `multi_dataset_batch_sampler`: proportional
|
588 |
+
|
589 |
+
</details>
|
590 |
+
|
591 |
+
### Training Logs
|
592 |
+
| Epoch | Step | Training Loss | Validation Loss | MSE-val-en-to-ar_negative_mse | MSE-val-en-to-da_negative_mse | MSE-val-en-to-de_negative_mse | MSE-val-en-to-en_negative_mse | MSE-val-en-to-es_negative_mse | MSE-val-en-to-fi_negative_mse | MSE-val-en-to-fr_negative_mse | MSE-val-en-to-he_negative_mse | MSE-val-en-to-hu_negative_mse | MSE-val-en-to-it_negative_mse | MSE-val-en-to-ja_negative_mse | MSE-val-en-to-ko_negative_mse | MSE-val-en-to-km_negative_mse | MSE-val-en-to-ms_negative_mse | MSE-val-en-to-nl_negative_mse | MSE-val-en-to-no_negative_mse | MSE-val-en-to-pl_negative_mse | MSE-val-en-to-pt_negative_mse | MSE-val-en-to-ru_negative_mse | MSE-val-en-to-sv_negative_mse | MSE-val-en-to-th_negative_mse | MSE-val-en-to-tr_negative_mse | MSE-val-en-to-vi_negative_mse | MSE-val-en-to-zh_cn_negative_mse | MSE-val-en-to-zh_hk_negative_mse | MSE-val-en-to-zh_tw_negative_mse |
|
593 |
+
|:------:|:----:|:-------------:|:---------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:--------------------------------:|:--------------------------------:|:--------------------------------:|
|
594 |
+
| 0.1367 | 500 | 0.3588 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
595 |
+
| 0.2734 | 1000 | 0.3078 | 0.2868 | -27.3597 | -26.5326 | -26.5313 | -26.0601 | -26.4280 | -26.8319 | -26.4885 | -27.1627 | -26.9695 | -26.5628 | -27.2583 | -27.7239 | -31.2177 | -26.6501 | -26.4197 | -26.4809 | -26.6655 | -26.4345 | -26.6570 | -26.5526 | -30.4823 | -26.9554 | -27.1040 | -27.0230 | -26.9012 | -27.0515 |
|
596 |
+
| 0.4102 | 1500 | 0.2846 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
597 |
+
| 0.5469 | 2000 | 0.2707 | 0.2617 | -24.6096 | -22.8821 | -22.8752 | -21.8660 | -22.7026 | -23.6128 | -22.7468 | -24.2281 | -23.6469 | -22.9147 | -24.3616 | -25.2999 | -30.4061 | -23.0865 | -22.5916 | -22.8392 | -23.1451 | -22.7741 | -23.2652 | -22.9440 | -29.2747 | -23.5285 | -23.8786 | -23.6384 | -23.5170 | -23.8081 |
|
598 |
+
| 0.6836 | 2500 | 0.2613 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
599 |
+
| 0.8203 | 3000 | 0.2542 | 0.2491 | -23.2261 | -21.0314 | -20.9970 | -19.7599 | -20.8388 | -21.9791 | -20.8374 | -22.8299 | -22.0605 | -21.0367 | -22.9281 | -24.1290 | -29.9238 | -21.2195 | -20.6506 | -20.9939 | -21.4204 | -20.9651 | -21.5594 | -21.0815 | -28.3947 | -21.8046 | -22.2153 | -21.9866 | -21.8474 | -22.1930 |
|
600 |
+
| 0.9571 | 3500 | 0.248 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
601 |
+
| 1.0938 | 4000 | 0.2438 | 0.2420 | -22.4435 | -19.9880 | -19.9588 | -18.5856 | -19.7880 | -20.9892 | -19.8194 | -21.9951 | -21.1703 | -19.9940 | -22.1052 | -23.3569 | -29.5927 | -20.1685 | -19.5862 | -19.9676 | -20.4346 | -19.9623 | -20.6201 | -20.0273 | -27.9725 | -20.8061 | -21.2406 | -21.0913 | -20.9345 | -21.3353 |
|
602 |
+
| 1.2305 | 4500 | 0.2401 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
603 |
+
| 1.3672 | 5000 | 0.2371 | 0.2373 | -21.9444 | -19.3005 | -19.2441 | -17.7989 | -19.0868 | -20.3950 | -19.1305 | -21.5127 | -20.6068 | -19.3250 | -21.5673 | -22.8791 | -29.3793 | -19.4702 | -18.8669 | -19.2886 | -19.8258 | -19.3057 | -20.0101 | -19.3345 | -27.5779 | -20.1899 | -20.6284 | -20.5167 | -20.3229 | -20.7721 |
|
604 |
+
| 1.5040 | 5500 | 0.2349 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
605 |
+
| 1.6407 | 6000 | 0.2336 | 0.2346 | -21.6615 | -18.9016 | -18.8657 | -17.3452 | -18.6869 | -20.0105 | -18.7528 | -21.1990 | -20.2645 | -18.9266 | -21.2386 | -22.6295 | -29.2204 | -19.0695 | -18.4641 | -18.9026 | -19.4506 | -18.9074 | -19.6659 | -18.9515 | -27.3466 | -19.8162 | -20.2736 | -20.1841 | -19.9848 | -20.4531 |
|
606 |
+
| 1.7774 | 6500 | 0.2319 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
607 |
+
| 1.9141 | 7000 | 0.2309 | 0.2332 | -21.5220 | -18.7091 | -18.6632 | -17.1205 | -18.4809 | -19.8342 | -18.5557 | -21.0604 | -20.0990 | -18.7323 | -21.0808 | -22.4971 | -29.1680 | -18.8630 | -18.2583 | -18.6989 | -19.2859 | -18.7163 | -19.4929 | -18.7442 | -27.2443 | -19.6327 | -20.1037 | -20.0234 | -19.8106 | -20.3017 |
|
608 |
+
| 0.1367 | 500 | 0.2302 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
609 |
+
| 0.2734 | 1000 | 0.2261 | 0.2290 | -21.1100 | -18.0936 | -18.0277 | -16.4059 | -17.8516 | -19.2687 | -17.9684 | -20.6744 | -19.5689 | -18.1063 | -20.6725 | -22.0790 | -28.9503 | -18.2049 | -17.5842 | -18.0814 | -18.7115 | -18.1111 | -18.9581 | -18.1032 | -26.8510 | -19.0325 | -19.5538 | -19.6006 | -19.3362 | -19.8807 |
|
610 |
+
| 0.4102 | 1500 | 0.222 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
611 |
+
| 0.5469 | 2000 | 0.2188 | 0.2246 | -20.5835 | -17.4530 | -17.3853 | -15.6663 | -17.1929 | -18.6930 | -17.3208 | -20.1688 | -19.0165 | -17.4784 | -20.1460 | -21.6056 | -28.7345 | -17.5632 | -16.9100 | -17.4263 | -18.0993 | -17.4835 | -18.3902 | -17.4462 | -26.5854 | -18.4647 | -19.0091 | -19.0492 | -18.7904 | -19.3776 |
|
612 |
+
| 0.6836 | 2500 | 0.2166 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
613 |
+
| 0.8203 | 3000 | 0.2148 | 0.2226 | -20.3772 | -17.1675 | -17.1095 | -15.3337 | -16.8981 | -18.4286 | -17.0421 | -19.9421 | -18.7571 | -17.1871 | -19.9155 | -21.3992 | -28.6587 | -17.2521 | -16.6051 | -17.1500 | -17.8465 | -17.1935 | -18.1342 | -17.1320 | -26.4308 | -18.1833 | -18.7496 | -18.8118 | -18.5408 | -19.1404 |
|
614 |
+
| 0.9571 | 3500 | 0.2133 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
615 |
+
|
616 |
+
|
617 |
+
### Framework Versions
|
618 |
+
- Python: 3.10.12
|
619 |
+
- Sentence Transformers: 3.3.1
|
620 |
+
- Transformers: 4.46.3
|
621 |
+
- PyTorch: 2.5.1+cu121
|
622 |
+
- Accelerate: 1.1.1
|
623 |
+
- Datasets: 3.1.0
|
624 |
+
- Tokenizers: 0.20.3
|
625 |
+
|
626 |
+
## Citation
|
627 |
+
|
628 |
+
### BibTeX
|
629 |
+
|
630 |
+
#### Sentence Transformers
|
631 |
+
```bibtex
|
632 |
+
@inproceedings{reimers-2019-sentence-bert,
|
633 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
634 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
635 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
636 |
+
month = "11",
|
637 |
+
year = "2019",
|
638 |
+
publisher = "Association for Computational Linguistics",
|
639 |
+
url = "https://arxiv.org/abs/1908.10084",
|
640 |
+
}
|
641 |
+
```
|
642 |
+
|
643 |
+
#### MSELoss
|
644 |
+
```bibtex
|
645 |
+
@inproceedings{reimers-2020-multilingual-sentence-bert,
|
646 |
+
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
|
647 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
648 |
+
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
|
649 |
+
month = "11",
|
650 |
+
year = "2020",
|
651 |
+
publisher = "Association for Computational Linguistics",
|
652 |
+
url = "https://arxiv.org/abs/2004.09813",
|
653 |
+
}
|
654 |
+
```
|
655 |
+
|
656 |
+
<!--
|
657 |
+
## Glossary
|
658 |
+
|
659 |
+
*Clearly define terms in order to be accessible across audiences.*
|
660 |
+
-->
|
661 |
+
|
662 |
+
<!--
|
663 |
+
## Model Card Authors
|
664 |
+
|
665 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
666 |
+
-->
|
667 |
+
|
668 |
+
<!--
|
669 |
+
## Model Card Contact
|
670 |
+
|
671 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
672 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "google-bert/bert-base-multilingual-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"directionality": "bidi",
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"pooler_fc_size": 768,
|
21 |
+
"pooler_num_attention_heads": 12,
|
22 |
+
"pooler_num_fc_layers": 3,
|
23 |
+
"pooler_size_per_head": 128,
|
24 |
+
"pooler_type": "first_token_transform",
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.46.3",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 105879
|
31 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.46.3",
|
5 |
+
"pytorch": "2.5.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2934204df31251acb1185c212142d11a0064ebc58f06444eae2a09fc0cad516c
|
3 |
+
size 669448040
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"model_max_length": 512,
|
49 |
+
"pad_token": "[PAD]",
|
50 |
+
"sep_token": "[SEP]",
|
51 |
+
"strip_accents": null,
|
52 |
+
"tokenize_chinese_chars": true,
|
53 |
+
"tokenizer_class": "BertTokenizer",
|
54 |
+
"unk_token": "[UNK]"
|
55 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|