luanafelbarros commited on
Commit
5ebb00e
·
verified ·
1 Parent(s): 543a5f7

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,672 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:234000
8
+ - loss:MSELoss
9
+ base_model: google-bert/bert-base-multilingual-uncased
10
+ widget:
11
+ - source_sentence: who sings in spite of ourselves with john prine
12
+ sentences:
13
+ - es
14
+ - når ble michael jordan draftet til nba
15
+ - quien canta en spite of ourselves con john prine
16
+ - source_sentence: who wrote when you look me in the eyes
17
+ sentences:
18
+ - متى بدأت الفتاة الكشفية في بيع ملفات تعريف الارتباط
19
+ - A écrit when you look me in the eyes
20
+ - fr
21
+ - source_sentence: when was fathers day made a national holiday
22
+ sentences:
23
+ - wann wurde der Vatertag zum nationalen Feiertag
24
+ - de
25
+ - ' អ្នកណាច្រៀង i want to sing you a love song'
26
+ - source_sentence: what is the density of the continental crust
27
+ sentences:
28
+ - cuál es la densidad de la corteza continental
29
+ - wie zingt i want to sing you a love song
30
+ - es
31
+ - source_sentence: who wrote the song i shot the sheriff
32
+ sentences:
33
+ - Quel est l'âge légal pour consommer du vin au Canada?
34
+ - i shot the sheriff şarkısını kim besteledi
35
+ - tr
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - negative_mse
40
+ model-index:
41
+ - name: SentenceTransformer based on google-bert/bert-base-multilingual-uncased
42
+ results:
43
+ - task:
44
+ type: knowledge-distillation
45
+ name: Knowledge Distillation
46
+ dataset:
47
+ name: MSE val en to ar
48
+ type: MSE-val-en-to-ar
49
+ metrics:
50
+ - type: negative_mse
51
+ value: -20.37721574306488
52
+ name: Negative Mse
53
+ - task:
54
+ type: knowledge-distillation
55
+ name: Knowledge Distillation
56
+ dataset:
57
+ name: MSE val en to da
58
+ type: MSE-val-en-to-da
59
+ metrics:
60
+ - type: negative_mse
61
+ value: -17.167489230632782
62
+ name: Negative Mse
63
+ - task:
64
+ type: knowledge-distillation
65
+ name: Knowledge Distillation
66
+ dataset:
67
+ name: MSE val en to de
68
+ type: MSE-val-en-to-de
69
+ metrics:
70
+ - type: negative_mse
71
+ value: -17.10948944091797
72
+ name: Negative Mse
73
+ - task:
74
+ type: knowledge-distillation
75
+ name: Knowledge Distillation
76
+ dataset:
77
+ name: MSE val en to en
78
+ type: MSE-val-en-to-en
79
+ metrics:
80
+ - type: negative_mse
81
+ value: -15.333698689937592
82
+ name: Negative Mse
83
+ - task:
84
+ type: knowledge-distillation
85
+ name: Knowledge Distillation
86
+ dataset:
87
+ name: MSE val en to es
88
+ type: MSE-val-en-to-es
89
+ metrics:
90
+ - type: negative_mse
91
+ value: -16.898061335086823
92
+ name: Negative Mse
93
+ - task:
94
+ type: knowledge-distillation
95
+ name: Knowledge Distillation
96
+ dataset:
97
+ name: MSE val en to fi
98
+ type: MSE-val-en-to-fi
99
+ metrics:
100
+ - type: negative_mse
101
+ value: -18.428558111190796
102
+ name: Negative Mse
103
+ - task:
104
+ type: knowledge-distillation
105
+ name: Knowledge Distillation
106
+ dataset:
107
+ name: MSE val en to fr
108
+ type: MSE-val-en-to-fr
109
+ metrics:
110
+ - type: negative_mse
111
+ value: -17.04207956790924
112
+ name: Negative Mse
113
+ - task:
114
+ type: knowledge-distillation
115
+ name: Knowledge Distillation
116
+ dataset:
117
+ name: MSE val en to he
118
+ type: MSE-val-en-to-he
119
+ metrics:
120
+ - type: negative_mse
121
+ value: -19.942057132720947
122
+ name: Negative Mse
123
+ - task:
124
+ type: knowledge-distillation
125
+ name: Knowledge Distillation
126
+ dataset:
127
+ name: MSE val en to hu
128
+ type: MSE-val-en-to-hu
129
+ metrics:
130
+ - type: negative_mse
131
+ value: -18.757066130638123
132
+ name: Negative Mse
133
+ - task:
134
+ type: knowledge-distillation
135
+ name: Knowledge Distillation
136
+ dataset:
137
+ name: MSE val en to it
138
+ type: MSE-val-en-to-it
139
+ metrics:
140
+ - type: negative_mse
141
+ value: -17.18708872795105
142
+ name: Negative Mse
143
+ - task:
144
+ type: knowledge-distillation
145
+ name: Knowledge Distillation
146
+ dataset:
147
+ name: MSE val en to ja
148
+ type: MSE-val-en-to-ja
149
+ metrics:
150
+ - type: negative_mse
151
+ value: -19.915536046028137
152
+ name: Negative Mse
153
+ - task:
154
+ type: knowledge-distillation
155
+ name: Knowledge Distillation
156
+ dataset:
157
+ name: MSE val en to ko
158
+ type: MSE-val-en-to-ko
159
+ metrics:
160
+ - type: negative_mse
161
+ value: -21.39919400215149
162
+ name: Negative Mse
163
+ - task:
164
+ type: knowledge-distillation
165
+ name: Knowledge Distillation
166
+ dataset:
167
+ name: MSE val en to km
168
+ type: MSE-val-en-to-km
169
+ metrics:
170
+ - type: negative_mse
171
+ value: -28.658682107925415
172
+ name: Negative Mse
173
+ - task:
174
+ type: knowledge-distillation
175
+ name: Knowledge Distillation
176
+ dataset:
177
+ name: MSE val en to ms
178
+ type: MSE-val-en-to-ms
179
+ metrics:
180
+ - type: negative_mse
181
+ value: -17.25209951400757
182
+ name: Negative Mse
183
+ - task:
184
+ type: knowledge-distillation
185
+ name: Knowledge Distillation
186
+ dataset:
187
+ name: MSE val en to nl
188
+ type: MSE-val-en-to-nl
189
+ metrics:
190
+ - type: negative_mse
191
+ value: -16.605134308338165
192
+ name: Negative Mse
193
+ - task:
194
+ type: knowledge-distillation
195
+ name: Knowledge Distillation
196
+ dataset:
197
+ name: MSE val en to no
198
+ type: MSE-val-en-to-no
199
+ metrics:
200
+ - type: negative_mse
201
+ value: -17.149969935417175
202
+ name: Negative Mse
203
+ - task:
204
+ type: knowledge-distillation
205
+ name: Knowledge Distillation
206
+ dataset:
207
+ name: MSE val en to pl
208
+ type: MSE-val-en-to-pl
209
+ metrics:
210
+ - type: negative_mse
211
+ value: -17.846450209617615
212
+ name: Negative Mse
213
+ - task:
214
+ type: knowledge-distillation
215
+ name: Knowledge Distillation
216
+ dataset:
217
+ name: MSE val en to pt
218
+ type: MSE-val-en-to-pt
219
+ metrics:
220
+ - type: negative_mse
221
+ value: -17.19353199005127
222
+ name: Negative Mse
223
+ - task:
224
+ type: knowledge-distillation
225
+ name: Knowledge Distillation
226
+ dataset:
227
+ name: MSE val en to ru
228
+ type: MSE-val-en-to-ru
229
+ metrics:
230
+ - type: negative_mse
231
+ value: -18.13419610261917
232
+ name: Negative Mse
233
+ - task:
234
+ type: knowledge-distillation
235
+ name: Knowledge Distillation
236
+ dataset:
237
+ name: MSE val en to sv
238
+ type: MSE-val-en-to-sv
239
+ metrics:
240
+ - type: negative_mse
241
+ value: -17.13200956583023
242
+ name: Negative Mse
243
+ - task:
244
+ type: knowledge-distillation
245
+ name: Knowledge Distillation
246
+ dataset:
247
+ name: MSE val en to th
248
+ type: MSE-val-en-to-th
249
+ metrics:
250
+ - type: negative_mse
251
+ value: -26.43084228038788
252
+ name: Negative Mse
253
+ - task:
254
+ type: knowledge-distillation
255
+ name: Knowledge Distillation
256
+ dataset:
257
+ name: MSE val en to tr
258
+ type: MSE-val-en-to-tr
259
+ metrics:
260
+ - type: negative_mse
261
+ value: -18.183308839797974
262
+ name: Negative Mse
263
+ - task:
264
+ type: knowledge-distillation
265
+ name: Knowledge Distillation
266
+ dataset:
267
+ name: MSE val en to vi
268
+ type: MSE-val-en-to-vi
269
+ metrics:
270
+ - type: negative_mse
271
+ value: -18.749597668647766
272
+ name: Negative Mse
273
+ - task:
274
+ type: knowledge-distillation
275
+ name: Knowledge Distillation
276
+ dataset:
277
+ name: MSE val en to zh cn
278
+ type: MSE-val-en-to-zh_cn
279
+ metrics:
280
+ - type: negative_mse
281
+ value: -18.811793625354767
282
+ name: Negative Mse
283
+ - task:
284
+ type: knowledge-distillation
285
+ name: Knowledge Distillation
286
+ dataset:
287
+ name: MSE val en to zh hk
288
+ type: MSE-val-en-to-zh_hk
289
+ metrics:
290
+ - type: negative_mse
291
+ value: -18.54081153869629
292
+ name: Negative Mse
293
+ - task:
294
+ type: knowledge-distillation
295
+ name: Knowledge Distillation
296
+ dataset:
297
+ name: MSE val en to zh tw
298
+ type: MSE-val-en-to-zh_tw
299
+ metrics:
300
+ - type: negative_mse
301
+ value: -19.14038509130478
302
+ name: Negative Mse
303
+ ---
304
+
305
+ # SentenceTransformer based on google-bert/bert-base-multilingual-uncased
306
+
307
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
308
+
309
+ ## Model Details
310
+
311
+ ### Model Description
312
+ - **Model Type:** Sentence Transformer
313
+ - **Base model:** [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) <!-- at revision 7cbf9a625e29989f6b9c6c2fa68234c304f7e38f -->
314
+ - **Maximum Sequence Length:** 128 tokens
315
+ - **Output Dimensionality:** 768 dimensions
316
+ - **Similarity Function:** Cosine Similarity
317
+ <!-- - **Training Dataset:** Unknown -->
318
+ <!-- - **Language:** Unknown -->
319
+ <!-- - **License:** Unknown -->
320
+
321
+ ### Model Sources
322
+
323
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
324
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
325
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
326
+
327
+ ### Full Model Architecture
328
+
329
+ ```
330
+ SentenceTransformer(
331
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
332
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
333
+ )
334
+ ```
335
+
336
+ ## Usage
337
+
338
+ ### Direct Usage (Sentence Transformers)
339
+
340
+ First install the Sentence Transformers library:
341
+
342
+ ```bash
343
+ pip install -U sentence-transformers
344
+ ```
345
+
346
+ Then you can load this model and run inference.
347
+ ```python
348
+ from sentence_transformers import SentenceTransformer
349
+
350
+ # Download from the 🤗 Hub
351
+ model = SentenceTransformer("luanafelbarros/bert-base-multilingual-uncased-matryoshka-mkqa")
352
+ # Run inference
353
+ sentences = [
354
+ 'who wrote the song i shot the sheriff',
355
+ 'i shot the sheriff şarkısını kim besteledi',
356
+ 'tr',
357
+ ]
358
+ embeddings = model.encode(sentences)
359
+ print(embeddings.shape)
360
+ # [3, 768]
361
+
362
+ # Get the similarity scores for the embeddings
363
+ similarities = model.similarity(embeddings, embeddings)
364
+ print(similarities.shape)
365
+ # [3, 3]
366
+ ```
367
+
368
+ <!--
369
+ ### Direct Usage (Transformers)
370
+
371
+ <details><summary>Click to see the direct usage in Transformers</summary>
372
+
373
+ </details>
374
+ -->
375
+
376
+ <!--
377
+ ### Downstream Usage (Sentence Transformers)
378
+
379
+ You can finetune this model on your own dataset.
380
+
381
+ <details><summary>Click to expand</summary>
382
+
383
+ </details>
384
+ -->
385
+
386
+ <!--
387
+ ### Out-of-Scope Use
388
+
389
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
390
+ -->
391
+
392
+ ## Evaluation
393
+
394
+ ### Metrics
395
+
396
+ #### Knowledge Distillation
397
+
398
+ * Datasets: `MSE-val-en-to-ar`, `MSE-val-en-to-da`, `MSE-val-en-to-de`, `MSE-val-en-to-en`, `MSE-val-en-to-es`, `MSE-val-en-to-fi`, `MSE-val-en-to-fr`, `MSE-val-en-to-he`, `MSE-val-en-to-hu`, `MSE-val-en-to-it`, `MSE-val-en-to-ja`, `MSE-val-en-to-ko`, `MSE-val-en-to-km`, `MSE-val-en-to-ms`, `MSE-val-en-to-nl`, `MSE-val-en-to-no`, `MSE-val-en-to-pl`, `MSE-val-en-to-pt`, `MSE-val-en-to-ru`, `MSE-val-en-to-sv`, `MSE-val-en-to-th`, `MSE-val-en-to-tr`, `MSE-val-en-to-vi`, `MSE-val-en-to-zh_cn`, `MSE-val-en-to-zh_hk` and `MSE-val-en-to-zh_tw`
399
+ * Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
400
+
401
+ | Metric | MSE-val-en-to-ar | MSE-val-en-to-da | MSE-val-en-to-de | MSE-val-en-to-en | MSE-val-en-to-es | MSE-val-en-to-fi | MSE-val-en-to-fr | MSE-val-en-to-he | MSE-val-en-to-hu | MSE-val-en-to-it | MSE-val-en-to-ja | MSE-val-en-to-ko | MSE-val-en-to-km | MSE-val-en-to-ms | MSE-val-en-to-nl | MSE-val-en-to-no | MSE-val-en-to-pl | MSE-val-en-to-pt | MSE-val-en-to-ru | MSE-val-en-to-sv | MSE-val-en-to-th | MSE-val-en-to-tr | MSE-val-en-to-vi | MSE-val-en-to-zh_cn | MSE-val-en-to-zh_hk | MSE-val-en-to-zh_tw |
402
+ |:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:--------------------|:--------------------|:--------------------|
403
+ | **negative_mse** | **-20.3772** | **-17.1675** | **-17.1095** | **-15.3337** | **-16.8981** | **-18.4286** | **-17.0421** | **-19.9421** | **-18.7571** | **-17.1871** | **-19.9155** | **-21.3992** | **-28.6587** | **-17.2521** | **-16.6051** | **-17.15** | **-17.8465** | **-17.1935** | **-18.1342** | **-17.132** | **-26.4308** | **-18.1833** | **-18.7496** | **-18.8118** | **-18.5408** | **-19.1404** |
404
+
405
+ <!--
406
+ ## Bias, Risks and Limitations
407
+
408
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
409
+ -->
410
+
411
+ <!--
412
+ ### Recommendations
413
+
414
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
415
+ -->
416
+
417
+ ## Training Details
418
+
419
+ ### Training Dataset
420
+
421
+ #### Unnamed Dataset
422
+
423
+
424
+ * Size: 234,000 training samples
425
+ * Columns: <code>english</code>, <code>non-english</code>, <code>target</code>, and <code>label</code>
426
+ * Approximate statistics based on the first 1000 samples:
427
+ | | english | non-english | target | label |
428
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-------------------------------------|
429
+ | type | string | string | string | list |
430
+ | details | <ul><li>min: 10 tokens</li><li>mean: 11.48 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 13.27 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.38 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
431
+ * Samples:
432
+ | english | non-english | target | label |
433
+ |:-------------------------------------------------|:--------------------------------------------------------|:----------------|:------------------------------------------------------------------------------------------------------------------------|
434
+ | <code>who plays hope on days of our lives</code> | <code>من الذي يلعب الأمل في أيام حياتنا</code> | <code>ar</code> | <code>[0.2171212136745453, 0.5138550996780396, 0.5517176389694214, -1.0655105113983154, 1.5853567123413086, ...]</code> |
435
+ | <code>who plays hope on days of our lives</code> | <code>hvem spiller hope i Horton-sagaen</code> | <code>da</code> | <code>[0.2171212136745453, 0.5138550996780396, 0.5517176389694214, -1.0655105113983154, 1.5853567123413086, ...]</code> |
436
+ | <code>who plays hope on days of our lives</code> | <code>Wer spielt die Hope in Zeit der Sehnsucht?</code> | <code>de</code> | <code>[0.2171212136745453, 0.5138550996780396, 0.5517176389694214, -1.0655105113983154, 1.5853567123413086, ...]</code> |
437
+ * Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
438
+
439
+ ### Evaluation Dataset
440
+
441
+ #### Unnamed Dataset
442
+
443
+
444
+ * Size: 13,000 evaluation samples
445
+ * Columns: <code>english</code>, <code>non-english</code>, <code>target</code>, and <code>label</code>
446
+ * Approximate statistics based on the first 1000 samples:
447
+ | | english | non-english | target | label |
448
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-------------------------------------|
449
+ | type | string | string | string | list |
450
+ | details | <ul><li>min: 10 tokens</li><li>mean: 11.53 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 13.37 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.38 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
451
+ * Samples:
452
+ | english | non-english | target | label |
453
+ |:------------------------------------------------------------|:----------------------------------------------------------------|:----------------|:-----------------------------------------------------------------------------------------------------------------------------|
454
+ | <code>who played prudence on nanny and the professor</code> | <code>من لعب دور "prudence" فى "nanny and the professor"</code> | <code>ar</code> | <code>[-0.2837616801261902, -0.4943353235721588, 0.020107418298721313, 0.7796109318733215, -0.47365888953208923, ...]</code> |
455
+ | <code>who played prudence on nanny and the professor</code> | <code>hvem spiller prudence på nanny and the professor</code> | <code>da</code> | <code>[-0.2837616801261902, -0.4943353235721588, 0.020107418298721313, 0.7796109318733215, -0.47365888953208923, ...]</code> |
456
+ | <code>who played prudence on nanny and the professor</code> | <code>Wer spielte Prudence in Nanny and the Professor</code> | <code>de</code> | <code>[-0.2837616801261902, -0.4943353235721588, 0.020107418298721313, 0.7796109318733215, -0.47365888953208923, ...]</code> |
457
+ * Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
458
+
459
+ ### Training Hyperparameters
460
+ #### Non-Default Hyperparameters
461
+
462
+ - `eval_strategy`: steps
463
+ - `per_device_train_batch_size`: 64
464
+ - `per_device_eval_batch_size`: 64
465
+ - `learning_rate`: 1e-05
466
+ - `num_train_epochs`: 1
467
+ - `warmup_ratio`: 0.1
468
+ - `fp16`: True
469
+
470
+ #### All Hyperparameters
471
+ <details><summary>Click to expand</summary>
472
+
473
+ - `overwrite_output_dir`: False
474
+ - `do_predict`: False
475
+ - `eval_strategy`: steps
476
+ - `prediction_loss_only`: True
477
+ - `per_device_train_batch_size`: 64
478
+ - `per_device_eval_batch_size`: 64
479
+ - `per_gpu_train_batch_size`: None
480
+ - `per_gpu_eval_batch_size`: None
481
+ - `gradient_accumulation_steps`: 1
482
+ - `eval_accumulation_steps`: None
483
+ - `torch_empty_cache_steps`: None
484
+ - `learning_rate`: 1e-05
485
+ - `weight_decay`: 0.0
486
+ - `adam_beta1`: 0.9
487
+ - `adam_beta2`: 0.999
488
+ - `adam_epsilon`: 1e-08
489
+ - `max_grad_norm`: 1.0
490
+ - `num_train_epochs`: 1
491
+ - `max_steps`: -1
492
+ - `lr_scheduler_type`: linear
493
+ - `lr_scheduler_kwargs`: {}
494
+ - `warmup_ratio`: 0.1
495
+ - `warmup_steps`: 0
496
+ - `log_level`: passive
497
+ - `log_level_replica`: warning
498
+ - `log_on_each_node`: True
499
+ - `logging_nan_inf_filter`: True
500
+ - `save_safetensors`: True
501
+ - `save_on_each_node`: False
502
+ - `save_only_model`: False
503
+ - `restore_callback_states_from_checkpoint`: False
504
+ - `no_cuda`: False
505
+ - `use_cpu`: False
506
+ - `use_mps_device`: False
507
+ - `seed`: 42
508
+ - `data_seed`: None
509
+ - `jit_mode_eval`: False
510
+ - `use_ipex`: False
511
+ - `bf16`: False
512
+ - `fp16`: True
513
+ - `fp16_opt_level`: O1
514
+ - `half_precision_backend`: auto
515
+ - `bf16_full_eval`: False
516
+ - `fp16_full_eval`: False
517
+ - `tf32`: None
518
+ - `local_rank`: 0
519
+ - `ddp_backend`: None
520
+ - `tpu_num_cores`: None
521
+ - `tpu_metrics_debug`: False
522
+ - `debug`: []
523
+ - `dataloader_drop_last`: False
524
+ - `dataloader_num_workers`: 0
525
+ - `dataloader_prefetch_factor`: None
526
+ - `past_index`: -1
527
+ - `disable_tqdm`: False
528
+ - `remove_unused_columns`: True
529
+ - `label_names`: None
530
+ - `load_best_model_at_end`: False
531
+ - `ignore_data_skip`: False
532
+ - `fsdp`: []
533
+ - `fsdp_min_num_params`: 0
534
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
535
+ - `fsdp_transformer_layer_cls_to_wrap`: None
536
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
537
+ - `deepspeed`: None
538
+ - `label_smoothing_factor`: 0.0
539
+ - `optim`: adamw_torch
540
+ - `optim_args`: None
541
+ - `adafactor`: False
542
+ - `group_by_length`: False
543
+ - `length_column_name`: length
544
+ - `ddp_find_unused_parameters`: None
545
+ - `ddp_bucket_cap_mb`: None
546
+ - `ddp_broadcast_buffers`: False
547
+ - `dataloader_pin_memory`: True
548
+ - `dataloader_persistent_workers`: False
549
+ - `skip_memory_metrics`: True
550
+ - `use_legacy_prediction_loop`: False
551
+ - `push_to_hub`: False
552
+ - `resume_from_checkpoint`: None
553
+ - `hub_model_id`: None
554
+ - `hub_strategy`: every_save
555
+ - `hub_private_repo`: False
556
+ - `hub_always_push`: False
557
+ - `gradient_checkpointing`: False
558
+ - `gradient_checkpointing_kwargs`: None
559
+ - `include_inputs_for_metrics`: False
560
+ - `include_for_metrics`: []
561
+ - `eval_do_concat_batches`: True
562
+ - `fp16_backend`: auto
563
+ - `push_to_hub_model_id`: None
564
+ - `push_to_hub_organization`: None
565
+ - `mp_parameters`:
566
+ - `auto_find_batch_size`: False
567
+ - `full_determinism`: False
568
+ - `torchdynamo`: None
569
+ - `ray_scope`: last
570
+ - `ddp_timeout`: 1800
571
+ - `torch_compile`: False
572
+ - `torch_compile_backend`: None
573
+ - `torch_compile_mode`: None
574
+ - `dispatch_batches`: None
575
+ - `split_batches`: None
576
+ - `include_tokens_per_second`: False
577
+ - `include_num_input_tokens_seen`: False
578
+ - `neftune_noise_alpha`: None
579
+ - `optim_target_modules`: None
580
+ - `batch_eval_metrics`: False
581
+ - `eval_on_start`: False
582
+ - `use_liger_kernel`: False
583
+ - `eval_use_gather_object`: False
584
+ - `average_tokens_across_devices`: False
585
+ - `prompts`: None
586
+ - `batch_sampler`: batch_sampler
587
+ - `multi_dataset_batch_sampler`: proportional
588
+
589
+ </details>
590
+
591
+ ### Training Logs
592
+ | Epoch | Step | Training Loss | Validation Loss | MSE-val-en-to-ar_negative_mse | MSE-val-en-to-da_negative_mse | MSE-val-en-to-de_negative_mse | MSE-val-en-to-en_negative_mse | MSE-val-en-to-es_negative_mse | MSE-val-en-to-fi_negative_mse | MSE-val-en-to-fr_negative_mse | MSE-val-en-to-he_negative_mse | MSE-val-en-to-hu_negative_mse | MSE-val-en-to-it_negative_mse | MSE-val-en-to-ja_negative_mse | MSE-val-en-to-ko_negative_mse | MSE-val-en-to-km_negative_mse | MSE-val-en-to-ms_negative_mse | MSE-val-en-to-nl_negative_mse | MSE-val-en-to-no_negative_mse | MSE-val-en-to-pl_negative_mse | MSE-val-en-to-pt_negative_mse | MSE-val-en-to-ru_negative_mse | MSE-val-en-to-sv_negative_mse | MSE-val-en-to-th_negative_mse | MSE-val-en-to-tr_negative_mse | MSE-val-en-to-vi_negative_mse | MSE-val-en-to-zh_cn_negative_mse | MSE-val-en-to-zh_hk_negative_mse | MSE-val-en-to-zh_tw_negative_mse |
593
+ |:------:|:----:|:-------------:|:---------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:--------------------------------:|:--------------------------------:|:--------------------------------:|
594
+ | 0.1367 | 500 | 0.3588 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
595
+ | 0.2734 | 1000 | 0.3078 | 0.2868 | -27.3597 | -26.5326 | -26.5313 | -26.0601 | -26.4280 | -26.8319 | -26.4885 | -27.1627 | -26.9695 | -26.5628 | -27.2583 | -27.7239 | -31.2177 | -26.6501 | -26.4197 | -26.4809 | -26.6655 | -26.4345 | -26.6570 | -26.5526 | -30.4823 | -26.9554 | -27.1040 | -27.0230 | -26.9012 | -27.0515 |
596
+ | 0.4102 | 1500 | 0.2846 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
597
+ | 0.5469 | 2000 | 0.2707 | 0.2617 | -24.6096 | -22.8821 | -22.8752 | -21.8660 | -22.7026 | -23.6128 | -22.7468 | -24.2281 | -23.6469 | -22.9147 | -24.3616 | -25.2999 | -30.4061 | -23.0865 | -22.5916 | -22.8392 | -23.1451 | -22.7741 | -23.2652 | -22.9440 | -29.2747 | -23.5285 | -23.8786 | -23.6384 | -23.5170 | -23.8081 |
598
+ | 0.6836 | 2500 | 0.2613 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
599
+ | 0.8203 | 3000 | 0.2542 | 0.2491 | -23.2261 | -21.0314 | -20.9970 | -19.7599 | -20.8388 | -21.9791 | -20.8374 | -22.8299 | -22.0605 | -21.0367 | -22.9281 | -24.1290 | -29.9238 | -21.2195 | -20.6506 | -20.9939 | -21.4204 | -20.9651 | -21.5594 | -21.0815 | -28.3947 | -21.8046 | -22.2153 | -21.9866 | -21.8474 | -22.1930 |
600
+ | 0.9571 | 3500 | 0.248 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
601
+ | 1.0938 | 4000 | 0.2438 | 0.2420 | -22.4435 | -19.9880 | -19.9588 | -18.5856 | -19.7880 | -20.9892 | -19.8194 | -21.9951 | -21.1703 | -19.9940 | -22.1052 | -23.3569 | -29.5927 | -20.1685 | -19.5862 | -19.9676 | -20.4346 | -19.9623 | -20.6201 | -20.0273 | -27.9725 | -20.8061 | -21.2406 | -21.0913 | -20.9345 | -21.3353 |
602
+ | 1.2305 | 4500 | 0.2401 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
603
+ | 1.3672 | 5000 | 0.2371 | 0.2373 | -21.9444 | -19.3005 | -19.2441 | -17.7989 | -19.0868 | -20.3950 | -19.1305 | -21.5127 | -20.6068 | -19.3250 | -21.5673 | -22.8791 | -29.3793 | -19.4702 | -18.8669 | -19.2886 | -19.8258 | -19.3057 | -20.0101 | -19.3345 | -27.5779 | -20.1899 | -20.6284 | -20.5167 | -20.3229 | -20.7721 |
604
+ | 1.5040 | 5500 | 0.2349 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
605
+ | 1.6407 | 6000 | 0.2336 | 0.2346 | -21.6615 | -18.9016 | -18.8657 | -17.3452 | -18.6869 | -20.0105 | -18.7528 | -21.1990 | -20.2645 | -18.9266 | -21.2386 | -22.6295 | -29.2204 | -19.0695 | -18.4641 | -18.9026 | -19.4506 | -18.9074 | -19.6659 | -18.9515 | -27.3466 | -19.8162 | -20.2736 | -20.1841 | -19.9848 | -20.4531 |
606
+ | 1.7774 | 6500 | 0.2319 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
607
+ | 1.9141 | 7000 | 0.2309 | 0.2332 | -21.5220 | -18.7091 | -18.6632 | -17.1205 | -18.4809 | -19.8342 | -18.5557 | -21.0604 | -20.0990 | -18.7323 | -21.0808 | -22.4971 | -29.1680 | -18.8630 | -18.2583 | -18.6989 | -19.2859 | -18.7163 | -19.4929 | -18.7442 | -27.2443 | -19.6327 | -20.1037 | -20.0234 | -19.8106 | -20.3017 |
608
+ | 0.1367 | 500 | 0.2302 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
609
+ | 0.2734 | 1000 | 0.2261 | 0.2290 | -21.1100 | -18.0936 | -18.0277 | -16.4059 | -17.8516 | -19.2687 | -17.9684 | -20.6744 | -19.5689 | -18.1063 | -20.6725 | -22.0790 | -28.9503 | -18.2049 | -17.5842 | -18.0814 | -18.7115 | -18.1111 | -18.9581 | -18.1032 | -26.8510 | -19.0325 | -19.5538 | -19.6006 | -19.3362 | -19.8807 |
610
+ | 0.4102 | 1500 | 0.222 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
611
+ | 0.5469 | 2000 | 0.2188 | 0.2246 | -20.5835 | -17.4530 | -17.3853 | -15.6663 | -17.1929 | -18.6930 | -17.3208 | -20.1688 | -19.0165 | -17.4784 | -20.1460 | -21.6056 | -28.7345 | -17.5632 | -16.9100 | -17.4263 | -18.0993 | -17.4835 | -18.3902 | -17.4462 | -26.5854 | -18.4647 | -19.0091 | -19.0492 | -18.7904 | -19.3776 |
612
+ | 0.6836 | 2500 | 0.2166 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
613
+ | 0.8203 | 3000 | 0.2148 | 0.2226 | -20.3772 | -17.1675 | -17.1095 | -15.3337 | -16.8981 | -18.4286 | -17.0421 | -19.9421 | -18.7571 | -17.1871 | -19.9155 | -21.3992 | -28.6587 | -17.2521 | -16.6051 | -17.1500 | -17.8465 | -17.1935 | -18.1342 | -17.1320 | -26.4308 | -18.1833 | -18.7496 | -18.8118 | -18.5408 | -19.1404 |
614
+ | 0.9571 | 3500 | 0.2133 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
615
+
616
+
617
+ ### Framework Versions
618
+ - Python: 3.10.12
619
+ - Sentence Transformers: 3.3.1
620
+ - Transformers: 4.46.3
621
+ - PyTorch: 2.5.1+cu121
622
+ - Accelerate: 1.1.1
623
+ - Datasets: 3.1.0
624
+ - Tokenizers: 0.20.3
625
+
626
+ ## Citation
627
+
628
+ ### BibTeX
629
+
630
+ #### Sentence Transformers
631
+ ```bibtex
632
+ @inproceedings{reimers-2019-sentence-bert,
633
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
634
+ author = "Reimers, Nils and Gurevych, Iryna",
635
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
636
+ month = "11",
637
+ year = "2019",
638
+ publisher = "Association for Computational Linguistics",
639
+ url = "https://arxiv.org/abs/1908.10084",
640
+ }
641
+ ```
642
+
643
+ #### MSELoss
644
+ ```bibtex
645
+ @inproceedings{reimers-2020-multilingual-sentence-bert,
646
+ title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
647
+ author = "Reimers, Nils and Gurevych, Iryna",
648
+ booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
649
+ month = "11",
650
+ year = "2020",
651
+ publisher = "Association for Computational Linguistics",
652
+ url = "https://arxiv.org/abs/2004.09813",
653
+ }
654
+ ```
655
+
656
+ <!--
657
+ ## Glossary
658
+
659
+ *Clearly define terms in order to be accessible across audiences.*
660
+ -->
661
+
662
+ <!--
663
+ ## Model Card Authors
664
+
665
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
666
+ -->
667
+
668
+ <!--
669
+ ## Model Card Contact
670
+
671
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
672
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google-bert/bert-base-multilingual-uncased",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "pooler_fc_size": 768,
21
+ "pooler_num_attention_heads": 12,
22
+ "pooler_num_fc_layers": 3,
23
+ "pooler_size_per_head": 128,
24
+ "pooler_type": "first_token_transform",
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.46.3",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 105879
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.46.3",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2934204df31251acb1185c212142d11a0064ebc58f06444eae2a09fc0cad516c
3
+ size 669448040
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff