--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: initial-dq-model results: [] --- # initial-dq-model This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1677 - Precision: 0.7763 - Recall: 0.9380 - F1: 0.8495 - Accuracy: 0.9423 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2251 | 1.0 | 1220 | 0.1768 | 0.7481 | 0.9264 | 0.8277 | 0.9378 | | 0.186 | 2.0 | 2440 | 0.1677 | 0.7763 | 0.9380 | 0.8495 | 0.9423 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.10.2+cu113 - Datasets 2.8.0 - Tokenizers 0.13.2