File size: 1,908 Bytes
ecc91d2
 
 
 
 
 
 
 
 
d713e48
ecc91d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
base_model: distilbert-base-cased
model-index:
- name: whispQuote-ChunkedDQ
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whispQuote-ChunkedDQ

This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2317
- Precision: 0.6456
- Recall: 0.8030
- F1: 0.7157
- Accuracy: 0.9241

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 162  | 0.3050          | 0.5572    | 0.6886 | 0.6159 | 0.8903   |
| No log        | 2.0   | 324  | 0.2382          | 0.6363    | 0.7659 | 0.6951 | 0.9187   |
| No log        | 3.0   | 486  | 0.2350          | 0.6420    | 0.7927 | 0.7094 | 0.9220   |
| 0.3239        | 4.0   | 648  | 0.2303          | 0.6486    | 0.8012 | 0.7169 | 0.9228   |
| 0.3239        | 5.0   | 810  | 0.2317          | 0.6456    | 0.8030 | 0.7157 | 0.9241   |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.10.2+cu113
- Datasets 2.9.0
- Tokenizers 0.13.2