File size: 1,740 Bytes
fcea4cc 0303992 fcea4cc 0303992 fcea4cc 0303992 fcea4cc 0303992 fcea4cc 0da373d fcea4cc 0303992 fcea4cc 9c83c45 fcea4cc 0303992 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: xls-r-fleurs_zu-run1
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: audiofolder
type: audiofolder
config: default
split: validation
args: default
metrics:
- name: Wer
type: wer
value: 0.600381
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xls-r-fleurs_zu-run1
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the FLEURS (zu) dataset.
It achieves the following results:
- Wer (Validation): 61.41%
- Wer (Test): 60.23%
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer (Train) |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.004700 | 1.03 | 250 | 2.994741 | 1.000000 |
| 0.506900 | 2.05 | 500 | 0.662974 | 0.716426 |
| 0.250800 | 3.08 | 750 | 0.577737 | 0.639608 |
| 0.169900 | 4.11 | 1000 | 0.578752 | 0.600381 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3 |