--- license: apache-2.0 tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: wav2vec2-xls-r-300m-fleurs_zu-run1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: validation args: default metrics: - name: Wer type: wer value: 0.600381 --- # wav2vec2-xls-r-300m-asr_af-run1-fleurs_zu-run1 This model is a fine-tuned version of [lucas-meyer/wav2vec2-xls-r-300m-asr_af-run1](https://huggingface.co/lucas-meyer/wav2vec2-xls-r-300m-asr_af-run1) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.578752 - Wer: 0.600381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 50 | 19.607200 | 9.162900 | 1.000000 | | 100 | 7.038300 | 4.738822 | 1.000000 | | 150 | 4.190100 | 3.359574 | 1.000000 | | 200 | 3.161900 | 3.032595 | 1.000000 | | 250 | 3.004700 | 2.994741 | 1.000000 | | 300 | 2.988300 | 2.955285 | 1.000000 | | 350 | 2.675800 | 1.816109 | 1.000000 | | 400 | 1.064400 | 0.866473 | 0.814220 | | 450 | 0.601600 | 0.696754 | 0.712340 | | 500 | 0.506900 | 0.662974 | 0.716426 | | 550 | 0.432200 | 0.598446 | 0.667121 | | 600 | 0.358700 | 0.618853 | 0.681013 | | 650 | 0.333300 | 0.564290 | 0.627349 | | 700 | 0.283100 | 0.573746 | 0.646418 | | 750 | 0.250800 | 0.577737 | 0.639608 | | 800 | 0.232200 | 0.557288 | 0.604467 | | 850 | 0.191200 | 0.538959 | 0.590030 | | 900 | 0.195600 | 0.549700 | 0.600654 | | 950 | 0.193000 | 0.579098 | 0.611278 | | 1000 | 0.169900 | 0.578752 | 0.600381 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3