File size: 1,424 Bytes
fb2ade3 b80c2d1 fb2ade3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
base_model: mochi-1-preview
library_name: diffusers
license: apache-2.0
widget:
- text: a parrot flying in the blue skies, a grainy or noisy video effect in the background
output:
url: replicate-parrot-vhs.mp4
tags:
- text-to-video
- diffusers-training
- diffusers
- lora
- mochi-1-preview
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mochi-1 Preview LoRA Finetune
This is a LoRA fine-tune of the Mochi-1 preview model. The model was trained using custom training data.
## Usage
```python
from diffusers import MochiPipeline
from diffusers.utils import export_to_video
import torch
pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview")
pipe.load_lora_weights("lucataco/mochi-lora-vhs")
pipe.enable_model_cpu_offload()
video = pipe(
prompt="your prompt here",
guidance_scale=6.0,
num_inference_steps=64,
height=480,
width=848,
max_sequence_length=256,
).frames[0]
export_to_video(video, "output.mp4", fps=30)
```
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |