update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: xls-r-kyrgiz-cv8
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# xls-r-kyrgiz-cv8
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.5495
|
20 |
+
- Wer: 0.2951
|
21 |
+
- Cer: 0.0789
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0001
|
41 |
+
- train_batch_size: 32
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 128
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_steps: 500
|
49 |
+
- num_epochs: 300.0
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
55 |
+
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
|
56 |
+
| 3.1079 | 18.51 | 500 | 2.6795 | 0.9996 | 0.9825 |
|
57 |
+
| 0.8506 | 37.04 | 1000 | 0.4323 | 0.3718 | 0.0961 |
|
58 |
+
| 0.6821 | 55.55 | 1500 | 0.4105 | 0.3311 | 0.0878 |
|
59 |
+
| 0.6091 | 74.07 | 2000 | 0.4281 | 0.3168 | 0.0851 |
|
60 |
+
| 0.5429 | 92.58 | 2500 | 0.4525 | 0.3147 | 0.0842 |
|
61 |
+
| 0.5063 | 111.11 | 3000 | 0.4619 | 0.3144 | 0.0839 |
|
62 |
+
| 0.4661 | 129.62 | 3500 | 0.4660 | 0.3039 | 0.0818 |
|
63 |
+
| 0.4353 | 148.15 | 4000 | 0.4695 | 0.3083 | 0.0820 |
|
64 |
+
| 0.4048 | 166.65 | 4500 | 0.4909 | 0.3085 | 0.0824 |
|
65 |
+
| 0.3852 | 185.18 | 5000 | 0.5074 | 0.3048 | 0.0812 |
|
66 |
+
| 0.3567 | 203.69 | 5500 | 0.5111 | 0.3012 | 0.0810 |
|
67 |
+
| 0.3451 | 222.22 | 6000 | 0.5225 | 0.2982 | 0.0804 |
|
68 |
+
| 0.325 | 240.73 | 6500 | 0.5270 | 0.2955 | 0.0796 |
|
69 |
+
| 0.3089 | 259.25 | 7000 | 0.5381 | 0.2929 | 0.0793 |
|
70 |
+
| 0.2941 | 277.76 | 7500 | 0.5565 | 0.2923 | 0.0794 |
|
71 |
+
| 0.2945 | 296.29 | 8000 | 0.5495 | 0.2951 | 0.0789 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.17.0.dev0
|
77 |
+
- Pytorch 1.10.2+cu102
|
78 |
+
- Datasets 1.18.3
|
79 |
+
- Tokenizers 0.11.0
|