Text Generation
lucyknada commited on
Commit
f105d36
1 Parent(s): 3345a76

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +131 -0
README.md ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - Epiculous/SynthRP-Gens-v1-Filtered-n-Cleaned
5
+ - Epiculous/Synthstruct-Gens-v1-Filtered-n-Cleaned
6
+ language:
7
+ - en
8
+ - fr
9
+ - de
10
+ - es
11
+ - it
12
+ - pt
13
+ - ru
14
+ - zh
15
+ - ja
16
+ pipeline_tag: text-generation
17
+ ---
18
+
19
+
20
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64adfd277b5ff762771e4571/ijVNJF9HePkQCjejXZLcI.png)
21
+
22
+ Back from the dead! Hoping to make something cool to share with everyone! Introducing Crimson Dawn! Built atop the impressive [Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407); Crimson Dawn was built with the idea that AI should not be a boring bland generic assistant, but something that you can connect with on a more personal level. Something that can be interesting in a Roleplay, but useful as an assistant too.
23
+
24
+ ## Prompting
25
+ Crimson Dawn was trained with the Mistral Instruct template, therefore it should be prompted in the same way that you would prompt any other mistral model.
26
+
27
+ ```
28
+ "[INST] Prompt goes here [/INST]"
29
+ ```
30
+
31
+ ### Current Top Sampler Settings
32
+ ```json
33
+ {
34
+ "temp": 1.25,
35
+ "temperature_last": true,
36
+ "top_p": 1,
37
+ "top_k": -1,
38
+ "top_a": 0,
39
+ "tfs": 1,
40
+ "epsilon_cutoff": 0,
41
+ "eta_cutoff": 0,
42
+ "typical_p": 1,
43
+ "min_p": 0.3,
44
+ "rep_pen": 1,
45
+ "rep_pen_range": 0,
46
+ "rep_pen_decay": 0,
47
+ "rep_pen_slope": 1,
48
+ "no_repeat_ngram_size": 0,
49
+ "penalty_alpha": 0,
50
+ "num_beams": 1,
51
+ "length_penalty": 1,
52
+ "min_length": 0,
53
+ "encoder_rep_pen": 1,
54
+ "freq_pen": 0,
55
+ "presence_pen": 0,
56
+ "skew": 0,
57
+ "do_sample": true,
58
+ "early_stopping": false,
59
+ "dynatemp": false,
60
+ "min_temp": 0,
61
+ "max_temp": 2,
62
+ "dynatemp_exponent": 1,
63
+ "smoothing_factor": 0,
64
+ "smoothing_curve": 1,
65
+ "dry_allowed_length": 2,
66
+ "dry_multiplier": 0,
67
+ "dry_base": 1.75,
68
+ "dry_sequence_breakers": "[\"\\n\", \":\", \"\\\"\", \"*\"]",
69
+ "dry_penalty_last_n": 0,
70
+ "add_bos_token": true,
71
+ "ban_eos_token": false,
72
+ "skip_special_tokens": true,
73
+ "mirostat_mode": 0,
74
+ "mirostat_tau": 5,
75
+ "mirostat_eta": 0.1,
76
+ "guidance_scale": 1,
77
+ "negative_prompt": "",
78
+ "grammar_string": "",
79
+ "json_schema": {},
80
+ "banned_tokens": "",
81
+ "sampler_priority": [
82
+ "temperature",
83
+ "dynamic_temperature",
84
+ "quadratic_sampling",
85
+ "top_k",
86
+ "top_p",
87
+ "typical_p",
88
+ "epsilon_cutoff",
89
+ "eta_cutoff",
90
+ "tfs",
91
+ "top_a",
92
+ "min_p",
93
+ "mirostat"
94
+ ],
95
+ "samplers": [
96
+ "top_k",
97
+ "tfs_z",
98
+ "typical_p",
99
+ "top_p",
100
+ "min_p",
101
+ "temperature"
102
+ ],
103
+ "ignore_eos_token": false,
104
+ "spaces_between_special_tokens": true,
105
+ "speculative_ngram": false,
106
+ "sampler_order": [
107
+ 5,
108
+ 6,
109
+ 0,
110
+ 1,
111
+ 2,
112
+ 3,
113
+ 4
114
+ ],
115
+ "logit_bias": [],
116
+ "ignore_eos_token_aphrodite": false,
117
+ "spaces_between_special_tokens_aphrodite": true,
118
+ "rep_pen_size": 0,
119
+ "genamt": 1024,
120
+ "max_length": 16384
121
+ }
122
+ ```
123
+
124
+ ## Training
125
+ Training was done twice over 2 epochs each on two 2x [NVIDIA A6000 GPUs](https://www.nvidia.com/en-us/design-visualization/rtx-a6000/) using LoRA. A two-phased approach was used in which the base model was trained 2 epochs on RP data, the LoRA was then applied to base. Finally, the new modified base was trained 2 epochs on instruct, and the new instruct LoRA was applied to the modified base, resulting in what you see here.
126
+
127
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
128
+
129
+ ## Special Thanks
130
+ Special thanks to my friends over at Anthracite! Without their help and Kalomaze starting the synthetic data script, none of this would have been possible.
131
+ Also want to thank my friends in The Chaotic Neutrals for their friendship, support, and guidance.