File size: 1,938 Bytes
16574e8
 
 
 
 
 
 
 
 
 
 
 
 
 
e70d50b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16574e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
instance_prompt: KUJI

widget:
- text: >-
    Cherry tree in the style of KUJI
  output:
    url: >-
      examples/1.JPG
- text: >-
    Vibrant sunset. Effects and flares in the style of KUJI.
  output:
    url: >-
      examples/2.webp
- text: >-
    View through car window looking out on the desert, light leak effect, scenery, blurry, flmft in the style of KUJI.
  output:
    url: >-
      examples/3.JPG
- text: A mountain peak piercing through a sea of clouds at sunrise, with alpenglow on the summits, lens flare streaking across, flmft in the style of KUJI
  output:
    url: >-
      examples/4.JPG
- text: Sunny day at the beach in the style of KUJI.
  output:
    url: >-
      examples/5.WEBP
- text: >-
    Teenage bedroom with posters and clutter, warm color palette, flmft in the style of KUJI.
  output:
    url: >-
      examples/6.JPG
---

# Flux Lora Kuji

Trained on Replicate using:

https://replicate.com/ostris/flux-dev-lora-trainer/train


## Trigger words
You should use `KUJI` to trigger the image generation.


## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)

```py
from diffusers import AutoPipelineForText2Image
import torch

pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('ludocomito/flux-lora-kuji', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```

For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)