Text Generation
Safetensors
qwen2
chat
conversational
Eval Results
4-bit precision
File size: 6,423 Bytes
e98fa4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
---
language:
- en
- fr
- de
- es
- it
- pt
- ru
- zh
- ja
license: other
tags:
- chat
base_model: Qwen/Qwen2-72B-Instruct
datasets:
- Doctor-Shotgun/C2-Stheno
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- anthracite-org/nopm_claude_writing_fixed
license_name: tongyi-qianwen
license_link: https://huggingface.co/anthracite-org/magnum-v2-72b/blob/main/LICENSE
pipeline_tag: text-generation
model-index:
- name: magnum-v2-72b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 75.6
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v2-72b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 57.85
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v2-72b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 31.65
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v2-72b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 18.12
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v2-72b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 14.18
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v2-72b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 49.51
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v2-72b
      name: Open LLM Leaderboard
---

# MLX Format and Quantizations for Magnum v2 72b

Quantized to 4 bpw precision and tested using the `mlx_lm` utility on a 64GiB URAM M1 Max.

See [original model](https://huggingface.co/anthracite-org/magnum-v2-72b) for further details.

Larger, 8bpw quants available at [mlx-community](https://huggingface.co/mlx-community/magnum-v2-72b).

# Original Model card

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6491e00e057b0928b3e07b75/u8B-5bEeroN549uxUIisV.png)

This is the seventh (Lucky!) in a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus. This model is fine-tuned on top of [Qwen-2 72B Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct).

## Prompting
Model has been Instruct tuned with the ChatML formatting. A typical input would look like this:

```py
"""<|im_start|>user
Hi there!<|im_end|>
<|im_start|>assistant
Nice to meet you!<|im_end|>
<|im_start|>user
Can I ask a question?<|im_end|>
<|im_start|>assistant
"""
```

## Credits
- [anthracite-org/Stheno-Data-Filtered](https://huggingface.co/datasets/anthracite-org/Stheno-Data-Filtered)
- [anthracite-org/kalo-opus-instruct-22k-no-refusal](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal)
- [anthracite-org/nopm_claude_writing_fixed](https://huggingface.co/datasets/anthracite-org/nopm_claude_writing_fixed)

This model has been a team effort, and the credits goes to all members of Anthracite.

## Training
The training was done for 2 epochs. We used 8x [AMD Instinct™ MI300X Accelerators](https://www.amd.com/en/products/accelerators/instinct/mi300/mi300x.html) for the full-parameter fine-tuning of the model.

We also trained with a weight decay of 0.01 to help further stabilize the loss trajectory and mitigate catastrophic forgetting, and utilize a peak learning rate of 4e-6 to prevent the 2nd epoch loss from dropping too significantly (as it is a strong indicator of overfitting).
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6491e00e057b0928b3e07b75/hVd5gNqSLOlWTkUb0A7iE.png)

Sample Packing was done for 16k tokens rather than the 8k tokens used in our previous runs.

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)

## Safety
...
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_anthracite-org__magnum-v2-72b)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |41.15|
|IFEval (0-Shot)    |75.60|
|BBH (3-Shot)       |57.85|
|MATH Lvl 5 (4-Shot)|31.65|
|GPQA (0-shot)      |18.12|
|MuSR (0-shot)      |14.18|
|MMLU-PRO (5-shot)  |49.51|


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_anthracite-org__magnum-v2-72b)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |41.15|
|IFEval (0-Shot)    |75.60|
|BBH (3-Shot)       |57.85|
|MATH Lvl 5 (4-Shot)|31.65|
|GPQA (0-shot)      |18.12|
|MuSR (0-shot)      |14.18|
|MMLU-PRO (5-shot)  |49.51|