--- license: mit base_model: MilaNLProc/hate-ita-xlm-r-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: haspeech_ita results: [] language: - it datasets: - Paul/hatecheck-italian --- # haspeech_ita This model is a fine-tuned version of [MilaNLProc/hate-ita-xlm-r-large](https://huggingface.co/MilaNLProc/hate-ita-xlm-r-large) on a dataset [Paul/hatecheck-italian](https://huggingface.co/datasets/Paul/hatecheck-italian). It achieves the following results on the evaluation set: - Loss: 0.0030 - Accuracy: 0.9973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3538 | 0.48 | 100 | 0.2109 | 0.9241 | | 0.18 | 0.96 | 200 | 0.1058 | 0.9783 | | 0.0924 | 1.44 | 300 | 0.0618 | 0.9892 | | 0.0948 | 1.92 | 400 | 0.0382 | 0.9892 | | 0.0475 | 2.4 | 500 | 0.0607 | 0.9919 | | 0.0572 | 2.88 | 600 | 0.0030 | 0.9973 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1 - Datasets 2.15.0 - Tokenizers 0.15.0