--- license: mit base_model: neuraly/bert-base-italian-cased-sentiment tags: - generated_from_trainer datasets: - tweet_sentiment_multilingual metrics: - accuracy model-index: - name: sentiment_ita results: - task: name: Text Classification type: text-classification dataset: name: tweet_sentiment_multilingual type: tweet_sentiment_multilingual config: italian split: validation args: italian metrics: - name: Accuracy type: accuracy value: 0.6851851851851852 --- # sentiment_ita This model is a fine-tuned version of [neuraly/bert-base-italian-cased-sentiment](https://huggingface.co/neuraly/bert-base-italian-cased-sentiment) on the tweet_sentiment_multilingual dataset. It achieves the following results on the evaluation set: - Loss: 1.5199 - Accuracy: 0.6852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 170 | 1.1582 | 0.6173 | | No log | 2.0 | 340 | 0.8326 | 0.6389 | | 1.0735 | 3.0 | 510 | 0.7827 | 0.6543 | | 1.0735 | 4.0 | 680 | 0.7898 | 0.6728 | | 1.0735 | 5.0 | 850 | 0.8674 | 0.6759 | | 0.4509 | 6.0 | 1020 | 1.0103 | 0.6883 | | 0.4509 | 7.0 | 1190 | 1.1162 | 0.7006 | | 0.4509 | 8.0 | 1360 | 1.3433 | 0.6883 | | 0.1439 | 9.0 | 1530 | 1.4674 | 0.6821 | | 0.1439 | 10.0 | 1700 | 1.5199 | 0.6852 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1 - Datasets 2.15.0 - Tokenizers 0.15.0