--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer base_model: openai/whisper-large model-index: - name: openai/whisper-large results: [] --- # openai/whisper-large This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6750 - Wer: 16.9811 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1978 | 2.01 | 100 | 0.5474 | 21.0692 | | 0.0087 | 4.02 | 200 | 0.6202 | 19.4969 | | 0.0029 | 6.04 | 300 | 0.6264 | 18.2390 | | 0.0003 | 8.05 | 400 | 0.6659 | 17.1908 | | 0.0002 | 10.06 | 500 | 0.6750 | 16.9811 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2