File size: 1,944 Bytes
3099e3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: openai/whisper-large-v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# openai/whisper-large-v2
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7993
- Wer: 21.2788
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- training_steps: 800
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.007 | 8.33 | 100 | 0.5728 | 21.4885 |
| 0.0007 | 16.67 | 200 | 0.7017 | 22.1174 |
| 0.0003 | 25.0 | 300 | 0.7358 | 21.5933 |
| 0.0002 | 33.33 | 400 | 0.7598 | 21.5933 |
| 0.0002 | 41.67 | 500 | 0.7793 | 22.0126 |
| 0.0001 | 50.0 | 600 | 0.7896 | 22.0126 |
| 0.0001 | 58.33 | 700 | 0.7969 | 21.2788 |
| 0.0001 | 66.67 | 800 | 0.7993 | 21.2788 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|