File size: 1,944 Bytes
3099e3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: openai/whisper-large-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# openai/whisper-large-v2

This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7993
- Wer: 21.2788

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- training_steps: 800

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.007         | 8.33  | 100  | 0.5728          | 21.4885 |
| 0.0007        | 16.67 | 200  | 0.7017          | 22.1174 |
| 0.0003        | 25.0  | 300  | 0.7358          | 21.5933 |
| 0.0002        | 33.33 | 400  | 0.7598          | 21.5933 |
| 0.0002        | 41.67 | 500  | 0.7793          | 22.0126 |
| 0.0001        | 50.0  | 600  | 0.7896          | 22.0126 |
| 0.0001        | 58.33 | 700  | 0.7969          | 21.2788 |
| 0.0001        | 66.67 | 800  | 0.7993          | 21.2788 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.1
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2