luigisaetta commited on
Commit
fbcfb65
1 Parent(s): 4f68073

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - wer
7
+ model-index:
8
+ - name: whisper-atcosim
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # whisper-atcosim
16
+
17
+ This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0628
20
+ - Wer: 0.0369
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 1e-05
40
+ - train_batch_size: 2
41
+ - eval_batch_size: 2
42
+ - seed: 42
43
+ - distributed_type: multi-GPU
44
+ - num_devices: 2
45
+ - gradient_accumulation_steps: 8
46
+ - total_train_batch_size: 32
47
+ - total_eval_batch_size: 4
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - lr_scheduler_warmup_steps: 100
51
+ - training_steps: 200
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
57
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
58
+ | 0.5702 | 0.2 | 50 | 0.2557 | 0.1007 |
59
+ | 0.1181 | 0.39 | 100 | 0.1144 | 0.0775 |
60
+ | 0.1073 | 0.59 | 150 | 0.0740 | 0.0529 |
61
+ | 0.0747 | 0.79 | 200 | 0.0628 | 0.0369 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.29.0
67
+ - Pytorch 2.0.0+cu117
68
+ - Datasets 2.12.0
69
+ - Tokenizers 0.11.0