--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-atcosim2 results: [] --- # whisper-atcosim2 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0524 - Wer: 0.0304 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5702 | 0.2 | 50 | 0.2557 | 0.1007 | | 0.1181 | 0.39 | 100 | 0.1144 | 0.0775 | | 0.1084 | 0.59 | 150 | 0.0747 | 0.0482 | | 0.0737 | 0.79 | 200 | 0.0616 | 0.0369 | | 0.064 | 0.98 | 250 | 0.0556 | 0.0440 | | 0.0313 | 1.18 | 300 | 0.0524 | 0.0304 | ### Framework versions - Transformers 4.29.0 - Pytorch 2.0.0+cu117 - Datasets 2.12.0 - Tokenizers 0.11.0