--- language: - it license: apache-2.0 tags: - generated_from_trainer - whisper-event datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: luigisaetta/whisper-medium-it results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 it type: mozilla-foundation/common_voice_11_0 config: it split: test args: it metrics: - name: Wer type: wer value: 5.7191 --- # luigisaetta/whisper-medium-it This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1452 - Wer: 5.7191 ## Model description This model is a fine-tuning of the Whipser Medium model, on the specified dataset. ## Intended uses & limitations This model has been developed as part of the Hugging Face Whisper Fine Tuning sprint, December 2022. It is mean to spread the knowledge on how tese models are built and can be used to develop solutions where it is needed ASR on the Italian Language. It has not been extensively tested. It is possible that on other datasets the accuracy will be lower. Please, test it before using it. ## Training and evaluation data More information needed ## Training procedure The script **run.sh**, and the Python file, used for the training are saved in the repository. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1216 | 0.2 | 1000 | 0.2289 | 10.0594 | | 0.1801 | 0.4 | 2000 | 0.1851 | 7.6593 | | 0.1763 | 0.6 | 3000 | 0.1615 | 6.5258 | | 0.1337 | 0.8 | 4000 | 0.1506 | 6.0427 | | 0.0742 | 1.05 | 5000 | 0.1452 | 5.7191 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2