--- language: - it license: apache-2.0 tags: - generated_from_trainer - whisper-event datasets: - common_voice_11_0 metrics: - wer model-index: - name: luigisaetta/whisper-medium-it results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: it split: test args: it metrics: - name: Wer type: wer value: 5.719088879438656 --- # luigisaetta/whisper-medium This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1452 - Wer: 5.7191 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1216 | 0.2 | 1000 | 0.2289 | 10.0594 | | 0.1801 | 0.4 | 2000 | 0.1851 | 7.6593 | | 0.1763 | 0.6 | 3000 | 0.1615 | 6.5258 | | 0.1337 | 0.8 | 4000 | 0.1506 | 6.0427 | | 0.0742 | 1.05 | 5000 | 0.1452 | 5.7191 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2