{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6f4af75840>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687183581544328816, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3kvL2Pgk66Q1bSOrNUSjZsdDY7Bl3zuQAAAAAAAIA/ZsFGvTfufT7Zjge+69tJvn4mGr0u0SU8AAAAAAAAAABNv189w9aWP8YvHz7KMmi+6y6FPcoUoj0AAAAAAAAAAADTyz1FXp0+2s9hOgMvZr4raxg9U7pvvQAAAAAAAAAAGvyJPeypi7ljWdkz0dgcLcbPx7uFCqKzAACAPwAAgD9Q61++vP8TPnIJOz5eJd29BgYTOvXAtL0AAAAAAAAAAA1LDL5DKRw9HVR3PpD3CL7S+Ww92wTkPAAAAAAAAAAA+MuAvhXNLD4O6Hc+bYQrvlCx7LurZlY8AAAAAAAAAAB9PIq+BBcWP7OmRj0hhS2+BL7AvcBCXD0AAAAAAAAAAJYLhL7RLSi9++Jxuyd9MLqVn5Q+RAimOgAAgD8AAIA/5nUUPVjgnD/ePQw97wyJviwbUT1lZHU7AAAAAAAAAABtoxK+2ZM6PmWeGT6kfb29V89jPdeQojsAAAAAAAAAABYKrD5EDlY+nUqLvsFlbL4lsX49dbgtvQAAAAAAAAAAQImKvkckPL2WV6K75jY1uj1loj76wQI7AACAPwAAgD+A8tG9Kbhzuu6Sizqi14Y1u1GFOKZ1o7kAAIA/AACAP7OlWL4KPxG9/ftCvtkLBL0X438+1cbEPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGEomyX2M86MAWyUTegDjAF0lEdAlYFJ6IFeOXV9lChoBkdAXwGaJAMUh2gHTegDaAhHQJWCH6TGHYZ1fZQoaAZHQHEWXNPgvUVoB00+AmgIR0CVgogHeJpGdX2UKGgGR0Bx2sKE384xaAdNpwJoCEdAlYR1Ed/8VHV9lChoBkdAbFNEnb7CSGgHTaQBaAhHQJWFtnPE87p1fZQoaAZHQHH9Jf6XSjRoB01CAmgIR0CVidhA4XGfdX2UKGgGR0BgSg2AG0NSaAdN6ANoCEdAlY0FUQ04znV9lChoBkdAY2hwd8zAOGgHTegDaAhHQJWNUBsANod1fZQoaAZHwDPbAqNIbwVoB00xAWgIR0CVkuteUpuudX2UKGgGR0BuX8P+XJHRaAdNVQNoCEdAlZO5telbeXV9lChoBkdAbO07eVLSNWgHTSwCaAhHQJWUMmgJ1JV1fZQoaAZHQF/u7F85S3toB03oA2gIR0CVlkyKNyYHdX2UKGgGR0BroiNfgJkYaAdNmwFoCEdAlZcET101ZXV9lChoBkdAQ99KK508vGgHTRMBaAhHQJWdso4MnZ11fZQoaAZHQHEi6//NqxloB03pAmgIR0CVngj1wo9cdX2UKGgGR0Bq8ayfL9uQaAdNXAJoCEdAlZ5D1oQFtHV9lChoBkdAcWXDAaef7WgHTQ4CaAhHQJWeUyKvV3F1fZQoaAZHQG44ZcTrVvxoB02oAWgIR0CVnmIIWxhVdX2UKGgGR0BucdW2gFotaAdNdwJoCEdAlamQzHjp93V9lChoBkdAEIWQfZElV2gHTT8BaAhHQJWtpKPGQ0Z1fZQoaAZHQHIp7NwBHTZoB01fAmgIR0CVt/wlSjxkdX2UKGgGR0BwU5ciW3SbaAdNYwNoCEdAlbqA00m+kHV9lChoBkdAa5SqAjIJaGgHTRsCaAhHQJW7KAtnPE91fZQoaAZHQGwmTj3mFJxoB01dAmgIR0CVvhNaQmu1dX2UKGgGR0BwHsUJv5xjaAdNtQFoCEdAlb+wnc+JQHV9lChoBkfAS1/NX5nDi2gHTSgBaAhHQJXAS+sYEW91fZQoaAZHQGvvVCgK4QVoB01EA2gIR0CVwsSsr/bTdX2UKGgGR0Bsmc0Nz8xcaAdN+wFoCEdAlcPFpblijXV9lChoBkdAWjO7nPmgamgHTegDaAhHQJXD/ZxrBTJ1fZQoaAZHQGzWBePaL4xoB03LA2gIR0CV1rhf0EowdX2UKGgGR0Bx5Wvkili0aAdNIgJoCEdAldctjTa0yHV9lChoBkdAbPoQ8wHqvGgHTTQCaAhHQJXYNhsqJ/J1fZQoaAZHQGzNQAU+LWJoB001AmgIR0CV2Hb48EFGdX2UKGgGR0BwUMTDfm9yaAdNzQJoCEdAldjxAGB4EHV9lChoBkdAbMzIxQBPsWgHTVIBaAhHQJXjT3qRlpZ1fZQoaAZHQFFXS3b212JoB03oA2gIR0CV6Ye3QUpNdX2UKGgGR0BtKA7vG6wuaAdNyQFoCEdAlen1O9FnZnV9lChoBkdAbihDVH4GlmgHTQsCaAhHQJXrsOMERrd1fZQoaAZHQHDooKlYU35oB01RAWgIR0CV7CSDyvs7dX2UKGgGR0BwoX9n9NvgaAdNXAFoCEdAle1xS1mapnV9lChoBkdAbZ3OqvNeMWgHTQoCaAhHQJXuk1FYuCh1fZQoaAZHQHBJ4y9EkSpoB02QAWgIR0CV77L2HtWudX2UKGgGR0BvXYOFxn3+aAdNUAFoCEdAlfBek56t1nV9lChoBkdAbZxXBguyvGgHTYsBaAhHQJXyJYV6/qR1fZQoaAZHQHFFjUqhDgJoB02AAWgIR0CV86KvmozfdX2UKGgGR0BvAFaSs8xLaAdNXgJoCEdAlfdzb8FY+3V9lChoBkdAbtECXhOxjmgHTWwBaAhHQJX7JrSE12t1fZQoaAZHQGzj40l7dBVoB01NAmgIR0CV/TtdzGPxdX2UKGgGR0Bxb5vDP4VRaAdNgwJoCEdAlf5cBhhH9XV9lChoBkdAbLylF+d9UmgHTWEBaAhHQJX+qPdVNpN1fZQoaAZHQFw8eSB9TgloB03oA2gIR0CV/+APd2xIdX2UKGgGR0BxLxdOZb6haAdNdQFoCEdAlgDhm5DqnnV9lChoBkdAb2//IbOu72gHTXQBaAhHQJYB7tQbdad1fZQoaAZHQGodVN5+pfhoB02XAWgIR0CWAuN5dGAkdX2UKGgGR0Bt3lEofCAMaAdNvAFoCEdAlgNYfjjrA3V9lChoBkdAbb53Ehq0t2gHTcwBaAhHQJYISITGo751fZQoaAZHQGnwQXyiEg5oB03iAWgIR0CWChyO7xusdX2UKGgGR0Bvu1hgE2YOaAdN8gFoCEdAlgy0Qf6oEXV9lChoBkdAZQymGdqcmWgHTegDaAhHQJYNtUGVzIV1fZQoaAZHQG1BHlOoHcFoB00/AmgIR0CWDexkNFz/dX2UKGgGR0Bu+qiXY150aAdNlwFoCEdAlhGGgFotc3V9lChoBkdAbyLE2pAD72gHTe4BaAhHQJYSf8rI5o51fZQoaAZHQG0WcQI2OyVoB018AWgIR0CWKsUp/gBLdX2UKGgGR0Bxn5iDujREaAdNowFoCEdAlivIwIt16nV9lChoBkdAbm3sXzlLe2gHTaQBaAhHQJYtS9SMtK91fZQoaAZHQG8crFXJYDFoB02XAWgIR0CWLfg0j1PFdX2UKGgGR0BwyLE5yU9qaAdNlQJoCEdAli8XG0eEI3V9lChoBkdAbyvf1Hvtt2gHTYoBaAhHQJYwHzAeq711fZQoaAZHQG6PAxSHdoFoB02lAWgIR0CWMHsmfGuLdX2UKGgGR0BwSIfIS13MaAdNkwFoCEdAljU/kaMrE3V9lChoBkdAcdbDl5nlGWgHTYEBaAhHQJY198+iaiN1fZQoaAZHQG9IKebutwJoB01JAWgIR0CWNlujynUEdX2UKGgGR0BqxI1m8M/haAdNEwJoCEdAljcdN34bj3V9lChoBkdAb0PDjR2KVWgHTVsBaAhHQJY3Xr+o99t1fZQoaAZHQHHWRPKuB+ZoB011AWgIR0CWN4VtXPqtdX2UKGgGR0Bx2SVmjCYUaAdNXQFoCEdAljr8bNr0rnV9lChoBkdAcPwjZcs19GgHTWMBaAhHQJY8tGtp22Z1fZQoaAZHQG4rmI0qH45oB02mAWgIR0CWPaA4n4O+dX2UKGgGR0Bvg9Ql8gIQaAdNVgFoCEdAlj21ZkkKNXV9lChoBkdAcMJPZ7HAAWgHTWQBaAhHQJY9wEX+ERJ1fZQoaAZHQHGDrX6InBtoB02ZAWgIR0CWPnkBCD28dX2UKGgGR0BrNM0pEx7BaAdNWgFoCEdAlj7MgU1yenV9lChoBkdAcDzBLf1pTWgHTXcBaAhHQJZA2Kk2xY91fZQoaAZHQEAt8rqdH2BoB009AWgIR0CWQzPRArxzdX2UKGgGR0BFMEJSiudPaAdNMgFoCEdAlkO89fTkQ3V9lChoBkdAbN5mPHT7VWgHTWQBaAhHQJZF2N0eU6h1fZQoaAZHQHImVC5VfeFoB01TAWgIR0CWRp9lmOENdX2UKGgGR0BxWTjxTbWVaAdNkAFoCEdAlkl34Glhw3V9lChoBkdAbMB0Yj0L+mgHTaUBaAhHQJZKOiaiKzl1fZQoaAZHQF6vOhkAggZoB03oA2gIR0CWSjbdJrckdX2UKGgGR0BxmonOSntOaAdNgAFoCEdAlk0JJ04io3V9lChoBkdAazpQ+EAYHmgHTXIBaAhHQJZOKyMUAT91fZQoaAZHQHBsE92X9itoB01tAWgIR0CWTw+1jRUndX2UKGgGR0BwUYh+vyLAaAdNZwFoCEdAlk/2oBJZn3V9lChoBkdAbYzmz0HyE2gHTYwBaAhHQJZQWmixmkF1fZQoaAZHQGuBVaGHpKVoB02VAWgIR0CWUM4Uvf0mdX2UKGgGR0BvhR26kIomaAdNjgFoCEdAllFI0Q9RrXV9lChoBkdAb/9++dsi0WgHTXgBaAhHQJZU76N2ki51fZQoaAZHQGuM7noxHoZoB02XAWgIR0CWWsmK64DtdX2UKGgGR0Bx3Wt8uzyCaAdNhwFoCEdAllrfeP7vX3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}