Sebastian Urrea
commited on
Commit
β’
b59c73f
1
Parent(s):
558a5db
model
Browse files- Model.ipynb +1326 -0
Model.ipynb
ADDED
@@ -0,0 +1,1326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"name": "Model",
|
7 |
+
"provenance": []
|
8 |
+
},
|
9 |
+
"kernelspec": {
|
10 |
+
"name": "python3",
|
11 |
+
"display_name": "Python 3"
|
12 |
+
},
|
13 |
+
"language_info": {
|
14 |
+
"name": "python"
|
15 |
+
},
|
16 |
+
"widgets": {
|
17 |
+
"application/vnd.jupyter.widget-state+json": {
|
18 |
+
"429c6e78aec043d0b77eb34cafb16e1b": {
|
19 |
+
"model_module": "@jupyter-widgets/controls",
|
20 |
+
"model_name": "HBoxModel",
|
21 |
+
"model_module_version": "1.5.0",
|
22 |
+
"state": {
|
23 |
+
"_dom_classes": [],
|
24 |
+
"_model_module": "@jupyter-widgets/controls",
|
25 |
+
"_model_module_version": "1.5.0",
|
26 |
+
"_model_name": "HBoxModel",
|
27 |
+
"_view_count": null,
|
28 |
+
"_view_module": "@jupyter-widgets/controls",
|
29 |
+
"_view_module_version": "1.5.0",
|
30 |
+
"_view_name": "HBoxView",
|
31 |
+
"box_style": "",
|
32 |
+
"children": [
|
33 |
+
"IPY_MODEL_494f319e19d54a91ab454f1e472552ce",
|
34 |
+
"IPY_MODEL_0d275830f6e44acc828911fbf156cc1d",
|
35 |
+
"IPY_MODEL_6d0c8a919baa45eea6b23f39512968ce"
|
36 |
+
],
|
37 |
+
"layout": "IPY_MODEL_8a10fee82fdc4690a313ad54a990555f"
|
38 |
+
}
|
39 |
+
},
|
40 |
+
"494f319e19d54a91ab454f1e472552ce": {
|
41 |
+
"model_module": "@jupyter-widgets/controls",
|
42 |
+
"model_name": "HTMLModel",
|
43 |
+
"model_module_version": "1.5.0",
|
44 |
+
"state": {
|
45 |
+
"_dom_classes": [],
|
46 |
+
"_model_module": "@jupyter-widgets/controls",
|
47 |
+
"_model_module_version": "1.5.0",
|
48 |
+
"_model_name": "HTMLModel",
|
49 |
+
"_view_count": null,
|
50 |
+
"_view_module": "@jupyter-widgets/controls",
|
51 |
+
"_view_module_version": "1.5.0",
|
52 |
+
"_view_name": "HTMLView",
|
53 |
+
"description": "",
|
54 |
+
"description_tooltip": null,
|
55 |
+
"layout": "IPY_MODEL_b5790264731046f495ff046be1b36ab5",
|
56 |
+
"placeholder": "β",
|
57 |
+
"style": "IPY_MODEL_168cd756b824410d87bf6207e3b50627",
|
58 |
+
"value": "100%"
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"0d275830f6e44acc828911fbf156cc1d": {
|
62 |
+
"model_module": "@jupyter-widgets/controls",
|
63 |
+
"model_name": "FloatProgressModel",
|
64 |
+
"model_module_version": "1.5.0",
|
65 |
+
"state": {
|
66 |
+
"_dom_classes": [],
|
67 |
+
"_model_module": "@jupyter-widgets/controls",
|
68 |
+
"_model_module_version": "1.5.0",
|
69 |
+
"_model_name": "FloatProgressModel",
|
70 |
+
"_view_count": null,
|
71 |
+
"_view_module": "@jupyter-widgets/controls",
|
72 |
+
"_view_module_version": "1.5.0",
|
73 |
+
"_view_name": "ProgressView",
|
74 |
+
"bar_style": "success",
|
75 |
+
"description": "",
|
76 |
+
"description_tooltip": null,
|
77 |
+
"layout": "IPY_MODEL_bd86beccde9d4e1e97d1ecb6927383e3",
|
78 |
+
"max": 3,
|
79 |
+
"min": 0,
|
80 |
+
"orientation": "horizontal",
|
81 |
+
"style": "IPY_MODEL_63513ddda83741528278a72af036d825",
|
82 |
+
"value": 3
|
83 |
+
}
|
84 |
+
},
|
85 |
+
"6d0c8a919baa45eea6b23f39512968ce": {
|
86 |
+
"model_module": "@jupyter-widgets/controls",
|
87 |
+
"model_name": "HTMLModel",
|
88 |
+
"model_module_version": "1.5.0",
|
89 |
+
"state": {
|
90 |
+
"_dom_classes": [],
|
91 |
+
"_model_module": "@jupyter-widgets/controls",
|
92 |
+
"_model_module_version": "1.5.0",
|
93 |
+
"_model_name": "HTMLModel",
|
94 |
+
"_view_count": null,
|
95 |
+
"_view_module": "@jupyter-widgets/controls",
|
96 |
+
"_view_module_version": "1.5.0",
|
97 |
+
"_view_name": "HTMLView",
|
98 |
+
"description": "",
|
99 |
+
"description_tooltip": null,
|
100 |
+
"layout": "IPY_MODEL_d012a21eb0854e1cabf8c46dbd23857c",
|
101 |
+
"placeholder": "β",
|
102 |
+
"style": "IPY_MODEL_7472528de85d48a1a545f3436ddb00e5",
|
103 |
+
"value": " 3/3 [00:00<00:00, 40.27it/s]"
|
104 |
+
}
|
105 |
+
},
|
106 |
+
"8a10fee82fdc4690a313ad54a990555f": {
|
107 |
+
"model_module": "@jupyter-widgets/base",
|
108 |
+
"model_name": "LayoutModel",
|
109 |
+
"model_module_version": "1.2.0",
|
110 |
+
"state": {
|
111 |
+
"_model_module": "@jupyter-widgets/base",
|
112 |
+
"_model_module_version": "1.2.0",
|
113 |
+
"_model_name": "LayoutModel",
|
114 |
+
"_view_count": null,
|
115 |
+
"_view_module": "@jupyter-widgets/base",
|
116 |
+
"_view_module_version": "1.2.0",
|
117 |
+
"_view_name": "LayoutView",
|
118 |
+
"align_content": null,
|
119 |
+
"align_items": null,
|
120 |
+
"align_self": null,
|
121 |
+
"border": null,
|
122 |
+
"bottom": null,
|
123 |
+
"display": null,
|
124 |
+
"flex": null,
|
125 |
+
"flex_flow": null,
|
126 |
+
"grid_area": null,
|
127 |
+
"grid_auto_columns": null,
|
128 |
+
"grid_auto_flow": null,
|
129 |
+
"grid_auto_rows": null,
|
130 |
+
"grid_column": null,
|
131 |
+
"grid_gap": null,
|
132 |
+
"grid_row": null,
|
133 |
+
"grid_template_areas": null,
|
134 |
+
"grid_template_columns": null,
|
135 |
+
"grid_template_rows": null,
|
136 |
+
"height": null,
|
137 |
+
"justify_content": null,
|
138 |
+
"justify_items": null,
|
139 |
+
"left": null,
|
140 |
+
"margin": null,
|
141 |
+
"max_height": null,
|
142 |
+
"max_width": null,
|
143 |
+
"min_height": null,
|
144 |
+
"min_width": null,
|
145 |
+
"object_fit": null,
|
146 |
+
"object_position": null,
|
147 |
+
"order": null,
|
148 |
+
"overflow": null,
|
149 |
+
"overflow_x": null,
|
150 |
+
"overflow_y": null,
|
151 |
+
"padding": null,
|
152 |
+
"right": null,
|
153 |
+
"top": null,
|
154 |
+
"visibility": null,
|
155 |
+
"width": null
|
156 |
+
}
|
157 |
+
},
|
158 |
+
"b5790264731046f495ff046be1b36ab5": {
|
159 |
+
"model_module": "@jupyter-widgets/base",
|
160 |
+
"model_name": "LayoutModel",
|
161 |
+
"model_module_version": "1.2.0",
|
162 |
+
"state": {
|
163 |
+
"_model_module": "@jupyter-widgets/base",
|
164 |
+
"_model_module_version": "1.2.0",
|
165 |
+
"_model_name": "LayoutModel",
|
166 |
+
"_view_count": null,
|
167 |
+
"_view_module": "@jupyter-widgets/base",
|
168 |
+
"_view_module_version": "1.2.0",
|
169 |
+
"_view_name": "LayoutView",
|
170 |
+
"align_content": null,
|
171 |
+
"align_items": null,
|
172 |
+
"align_self": null,
|
173 |
+
"border": null,
|
174 |
+
"bottom": null,
|
175 |
+
"display": null,
|
176 |
+
"flex": null,
|
177 |
+
"flex_flow": null,
|
178 |
+
"grid_area": null,
|
179 |
+
"grid_auto_columns": null,
|
180 |
+
"grid_auto_flow": null,
|
181 |
+
"grid_auto_rows": null,
|
182 |
+
"grid_column": null,
|
183 |
+
"grid_gap": null,
|
184 |
+
"grid_row": null,
|
185 |
+
"grid_template_areas": null,
|
186 |
+
"grid_template_columns": null,
|
187 |
+
"grid_template_rows": null,
|
188 |
+
"height": null,
|
189 |
+
"justify_content": null,
|
190 |
+
"justify_items": null,
|
191 |
+
"left": null,
|
192 |
+
"margin": null,
|
193 |
+
"max_height": null,
|
194 |
+
"max_width": null,
|
195 |
+
"min_height": null,
|
196 |
+
"min_width": null,
|
197 |
+
"object_fit": null,
|
198 |
+
"object_position": null,
|
199 |
+
"order": null,
|
200 |
+
"overflow": null,
|
201 |
+
"overflow_x": null,
|
202 |
+
"overflow_y": null,
|
203 |
+
"padding": null,
|
204 |
+
"right": null,
|
205 |
+
"top": null,
|
206 |
+
"visibility": null,
|
207 |
+
"width": null
|
208 |
+
}
|
209 |
+
},
|
210 |
+
"168cd756b824410d87bf6207e3b50627": {
|
211 |
+
"model_module": "@jupyter-widgets/controls",
|
212 |
+
"model_name": "DescriptionStyleModel",
|
213 |
+
"model_module_version": "1.5.0",
|
214 |
+
"state": {
|
215 |
+
"_model_module": "@jupyter-widgets/controls",
|
216 |
+
"_model_module_version": "1.5.0",
|
217 |
+
"_model_name": "DescriptionStyleModel",
|
218 |
+
"_view_count": null,
|
219 |
+
"_view_module": "@jupyter-widgets/base",
|
220 |
+
"_view_module_version": "1.2.0",
|
221 |
+
"_view_name": "StyleView",
|
222 |
+
"description_width": ""
|
223 |
+
}
|
224 |
+
},
|
225 |
+
"bd86beccde9d4e1e97d1ecb6927383e3": {
|
226 |
+
"model_module": "@jupyter-widgets/base",
|
227 |
+
"model_name": "LayoutModel",
|
228 |
+
"model_module_version": "1.2.0",
|
229 |
+
"state": {
|
230 |
+
"_model_module": "@jupyter-widgets/base",
|
231 |
+
"_model_module_version": "1.2.0",
|
232 |
+
"_model_name": "LayoutModel",
|
233 |
+
"_view_count": null,
|
234 |
+
"_view_module": "@jupyter-widgets/base",
|
235 |
+
"_view_module_version": "1.2.0",
|
236 |
+
"_view_name": "LayoutView",
|
237 |
+
"align_content": null,
|
238 |
+
"align_items": null,
|
239 |
+
"align_self": null,
|
240 |
+
"border": null,
|
241 |
+
"bottom": null,
|
242 |
+
"display": null,
|
243 |
+
"flex": null,
|
244 |
+
"flex_flow": null,
|
245 |
+
"grid_area": null,
|
246 |
+
"grid_auto_columns": null,
|
247 |
+
"grid_auto_flow": null,
|
248 |
+
"grid_auto_rows": null,
|
249 |
+
"grid_column": null,
|
250 |
+
"grid_gap": null,
|
251 |
+
"grid_row": null,
|
252 |
+
"grid_template_areas": null,
|
253 |
+
"grid_template_columns": null,
|
254 |
+
"grid_template_rows": null,
|
255 |
+
"height": null,
|
256 |
+
"justify_content": null,
|
257 |
+
"justify_items": null,
|
258 |
+
"left": null,
|
259 |
+
"margin": null,
|
260 |
+
"max_height": null,
|
261 |
+
"max_width": null,
|
262 |
+
"min_height": null,
|
263 |
+
"min_width": null,
|
264 |
+
"object_fit": null,
|
265 |
+
"object_position": null,
|
266 |
+
"order": null,
|
267 |
+
"overflow": null,
|
268 |
+
"overflow_x": null,
|
269 |
+
"overflow_y": null,
|
270 |
+
"padding": null,
|
271 |
+
"right": null,
|
272 |
+
"top": null,
|
273 |
+
"visibility": null,
|
274 |
+
"width": null
|
275 |
+
}
|
276 |
+
},
|
277 |
+
"63513ddda83741528278a72af036d825": {
|
278 |
+
"model_module": "@jupyter-widgets/controls",
|
279 |
+
"model_name": "ProgressStyleModel",
|
280 |
+
"model_module_version": "1.5.0",
|
281 |
+
"state": {
|
282 |
+
"_model_module": "@jupyter-widgets/controls",
|
283 |
+
"_model_module_version": "1.5.0",
|
284 |
+
"_model_name": "ProgressStyleModel",
|
285 |
+
"_view_count": null,
|
286 |
+
"_view_module": "@jupyter-widgets/base",
|
287 |
+
"_view_module_version": "1.2.0",
|
288 |
+
"_view_name": "StyleView",
|
289 |
+
"bar_color": null,
|
290 |
+
"description_width": ""
|
291 |
+
}
|
292 |
+
},
|
293 |
+
"d012a21eb0854e1cabf8c46dbd23857c": {
|
294 |
+
"model_module": "@jupyter-widgets/base",
|
295 |
+
"model_name": "LayoutModel",
|
296 |
+
"model_module_version": "1.2.0",
|
297 |
+
"state": {
|
298 |
+
"_model_module": "@jupyter-widgets/base",
|
299 |
+
"_model_module_version": "1.2.0",
|
300 |
+
"_model_name": "LayoutModel",
|
301 |
+
"_view_count": null,
|
302 |
+
"_view_module": "@jupyter-widgets/base",
|
303 |
+
"_view_module_version": "1.2.0",
|
304 |
+
"_view_name": "LayoutView",
|
305 |
+
"align_content": null,
|
306 |
+
"align_items": null,
|
307 |
+
"align_self": null,
|
308 |
+
"border": null,
|
309 |
+
"bottom": null,
|
310 |
+
"display": null,
|
311 |
+
"flex": null,
|
312 |
+
"flex_flow": null,
|
313 |
+
"grid_area": null,
|
314 |
+
"grid_auto_columns": null,
|
315 |
+
"grid_auto_flow": null,
|
316 |
+
"grid_auto_rows": null,
|
317 |
+
"grid_column": null,
|
318 |
+
"grid_gap": null,
|
319 |
+
"grid_row": null,
|
320 |
+
"grid_template_areas": null,
|
321 |
+
"grid_template_columns": null,
|
322 |
+
"grid_template_rows": null,
|
323 |
+
"height": null,
|
324 |
+
"justify_content": null,
|
325 |
+
"justify_items": null,
|
326 |
+
"left": null,
|
327 |
+
"margin": null,
|
328 |
+
"max_height": null,
|
329 |
+
"max_width": null,
|
330 |
+
"min_height": null,
|
331 |
+
"min_width": null,
|
332 |
+
"object_fit": null,
|
333 |
+
"object_position": null,
|
334 |
+
"order": null,
|
335 |
+
"overflow": null,
|
336 |
+
"overflow_x": null,
|
337 |
+
"overflow_y": null,
|
338 |
+
"padding": null,
|
339 |
+
"right": null,
|
340 |
+
"top": null,
|
341 |
+
"visibility": null,
|
342 |
+
"width": null
|
343 |
+
}
|
344 |
+
},
|
345 |
+
"7472528de85d48a1a545f3436ddb00e5": {
|
346 |
+
"model_module": "@jupyter-widgets/controls",
|
347 |
+
"model_name": "DescriptionStyleModel",
|
348 |
+
"model_module_version": "1.5.0",
|
349 |
+
"state": {
|
350 |
+
"_model_module": "@jupyter-widgets/controls",
|
351 |
+
"_model_module_version": "1.5.0",
|
352 |
+
"_model_name": "DescriptionStyleModel",
|
353 |
+
"_view_count": null,
|
354 |
+
"_view_module": "@jupyter-widgets/base",
|
355 |
+
"_view_module_version": "1.2.0",
|
356 |
+
"_view_name": "StyleView",
|
357 |
+
"description_width": ""
|
358 |
+
}
|
359 |
+
},
|
360 |
+
"f0b51ffeb656453589ecdb407522dea3": {
|
361 |
+
"model_module": "@jupyter-widgets/controls",
|
362 |
+
"model_name": "HBoxModel",
|
363 |
+
"model_module_version": "1.5.0",
|
364 |
+
"state": {
|
365 |
+
"_dom_classes": [],
|
366 |
+
"_model_module": "@jupyter-widgets/controls",
|
367 |
+
"_model_module_version": "1.5.0",
|
368 |
+
"_model_name": "HBoxModel",
|
369 |
+
"_view_count": null,
|
370 |
+
"_view_module": "@jupyter-widgets/controls",
|
371 |
+
"_view_module_version": "1.5.0",
|
372 |
+
"_view_name": "HBoxView",
|
373 |
+
"box_style": "",
|
374 |
+
"children": [
|
375 |
+
"IPY_MODEL_37a1c33bb8284ecbb33ef163fa7b7fd8",
|
376 |
+
"IPY_MODEL_a2428193e74442508eb1cb33ed697c43",
|
377 |
+
"IPY_MODEL_180b0aaca969493eb17aec2eba9de6b8"
|
378 |
+
],
|
379 |
+
"layout": "IPY_MODEL_227dcef044b64faf8a91eaf4f0bb93d3"
|
380 |
+
}
|
381 |
+
},
|
382 |
+
"37a1c33bb8284ecbb33ef163fa7b7fd8": {
|
383 |
+
"model_module": "@jupyter-widgets/controls",
|
384 |
+
"model_name": "HTMLModel",
|
385 |
+
"model_module_version": "1.5.0",
|
386 |
+
"state": {
|
387 |
+
"_dom_classes": [],
|
388 |
+
"_model_module": "@jupyter-widgets/controls",
|
389 |
+
"_model_module_version": "1.5.0",
|
390 |
+
"_model_name": "HTMLModel",
|
391 |
+
"_view_count": null,
|
392 |
+
"_view_module": "@jupyter-widgets/controls",
|
393 |
+
"_view_module_version": "1.5.0",
|
394 |
+
"_view_name": "HTMLView",
|
395 |
+
"description": "",
|
396 |
+
"description_tooltip": null,
|
397 |
+
"layout": "IPY_MODEL_4e6495dc492d400bb3f3a9035087d9a4",
|
398 |
+
"placeholder": "β",
|
399 |
+
"style": "IPY_MODEL_fac9fe5ef6a44c3587f09d516a288c43",
|
400 |
+
"value": "100%"
|
401 |
+
}
|
402 |
+
},
|
403 |
+
"a2428193e74442508eb1cb33ed697c43": {
|
404 |
+
"model_module": "@jupyter-widgets/controls",
|
405 |
+
"model_name": "FloatProgressModel",
|
406 |
+
"model_module_version": "1.5.0",
|
407 |
+
"state": {
|
408 |
+
"_dom_classes": [],
|
409 |
+
"_model_module": "@jupyter-widgets/controls",
|
410 |
+
"_model_module_version": "1.5.0",
|
411 |
+
"_model_name": "FloatProgressModel",
|
412 |
+
"_view_count": null,
|
413 |
+
"_view_module": "@jupyter-widgets/controls",
|
414 |
+
"_view_module_version": "1.5.0",
|
415 |
+
"_view_name": "ProgressView",
|
416 |
+
"bar_style": "success",
|
417 |
+
"description": "",
|
418 |
+
"description_tooltip": null,
|
419 |
+
"layout": "IPY_MODEL_b23035bb26d841b38a646bd6f0c69652",
|
420 |
+
"max": 5,
|
421 |
+
"min": 0,
|
422 |
+
"orientation": "horizontal",
|
423 |
+
"style": "IPY_MODEL_5d454a22797c405688e73c1765040618",
|
424 |
+
"value": 5
|
425 |
+
}
|
426 |
+
},
|
427 |
+
"180b0aaca969493eb17aec2eba9de6b8": {
|
428 |
+
"model_module": "@jupyter-widgets/controls",
|
429 |
+
"model_name": "HTMLModel",
|
430 |
+
"model_module_version": "1.5.0",
|
431 |
+
"state": {
|
432 |
+
"_dom_classes": [],
|
433 |
+
"_model_module": "@jupyter-widgets/controls",
|
434 |
+
"_model_module_version": "1.5.0",
|
435 |
+
"_model_name": "HTMLModel",
|
436 |
+
"_view_count": null,
|
437 |
+
"_view_module": "@jupyter-widgets/controls",
|
438 |
+
"_view_module_version": "1.5.0",
|
439 |
+
"_view_name": "HTMLView",
|
440 |
+
"description": "",
|
441 |
+
"description_tooltip": null,
|
442 |
+
"layout": "IPY_MODEL_bd0857febb4249bb8f7ceb9d5777ba0a",
|
443 |
+
"placeholder": "β",
|
444 |
+
"style": "IPY_MODEL_f74c65693dd845d8a6da1fdd7577925f",
|
445 |
+
"value": " 5/5 [00:01<00:00, 4.77ba/s]"
|
446 |
+
}
|
447 |
+
},
|
448 |
+
"227dcef044b64faf8a91eaf4f0bb93d3": {
|
449 |
+
"model_module": "@jupyter-widgets/base",
|
450 |
+
"model_name": "LayoutModel",
|
451 |
+
"model_module_version": "1.2.0",
|
452 |
+
"state": {
|
453 |
+
"_model_module": "@jupyter-widgets/base",
|
454 |
+
"_model_module_version": "1.2.0",
|
455 |
+
"_model_name": "LayoutModel",
|
456 |
+
"_view_count": null,
|
457 |
+
"_view_module": "@jupyter-widgets/base",
|
458 |
+
"_view_module_version": "1.2.0",
|
459 |
+
"_view_name": "LayoutView",
|
460 |
+
"align_content": null,
|
461 |
+
"align_items": null,
|
462 |
+
"align_self": null,
|
463 |
+
"border": null,
|
464 |
+
"bottom": null,
|
465 |
+
"display": null,
|
466 |
+
"flex": null,
|
467 |
+
"flex_flow": null,
|
468 |
+
"grid_area": null,
|
469 |
+
"grid_auto_columns": null,
|
470 |
+
"grid_auto_flow": null,
|
471 |
+
"grid_auto_rows": null,
|
472 |
+
"grid_column": null,
|
473 |
+
"grid_gap": null,
|
474 |
+
"grid_row": null,
|
475 |
+
"grid_template_areas": null,
|
476 |
+
"grid_template_columns": null,
|
477 |
+
"grid_template_rows": null,
|
478 |
+
"height": null,
|
479 |
+
"justify_content": null,
|
480 |
+
"justify_items": null,
|
481 |
+
"left": null,
|
482 |
+
"margin": null,
|
483 |
+
"max_height": null,
|
484 |
+
"max_width": null,
|
485 |
+
"min_height": null,
|
486 |
+
"min_width": null,
|
487 |
+
"object_fit": null,
|
488 |
+
"object_position": null,
|
489 |
+
"order": null,
|
490 |
+
"overflow": null,
|
491 |
+
"overflow_x": null,
|
492 |
+
"overflow_y": null,
|
493 |
+
"padding": null,
|
494 |
+
"right": null,
|
495 |
+
"top": null,
|
496 |
+
"visibility": null,
|
497 |
+
"width": null
|
498 |
+
}
|
499 |
+
},
|
500 |
+
"4e6495dc492d400bb3f3a9035087d9a4": {
|
501 |
+
"model_module": "@jupyter-widgets/base",
|
502 |
+
"model_name": "LayoutModel",
|
503 |
+
"model_module_version": "1.2.0",
|
504 |
+
"state": {
|
505 |
+
"_model_module": "@jupyter-widgets/base",
|
506 |
+
"_model_module_version": "1.2.0",
|
507 |
+
"_model_name": "LayoutModel",
|
508 |
+
"_view_count": null,
|
509 |
+
"_view_module": "@jupyter-widgets/base",
|
510 |
+
"_view_module_version": "1.2.0",
|
511 |
+
"_view_name": "LayoutView",
|
512 |
+
"align_content": null,
|
513 |
+
"align_items": null,
|
514 |
+
"align_self": null,
|
515 |
+
"border": null,
|
516 |
+
"bottom": null,
|
517 |
+
"display": null,
|
518 |
+
"flex": null,
|
519 |
+
"flex_flow": null,
|
520 |
+
"grid_area": null,
|
521 |
+
"grid_auto_columns": null,
|
522 |
+
"grid_auto_flow": null,
|
523 |
+
"grid_auto_rows": null,
|
524 |
+
"grid_column": null,
|
525 |
+
"grid_gap": null,
|
526 |
+
"grid_row": null,
|
527 |
+
"grid_template_areas": null,
|
528 |
+
"grid_template_columns": null,
|
529 |
+
"grid_template_rows": null,
|
530 |
+
"height": null,
|
531 |
+
"justify_content": null,
|
532 |
+
"justify_items": null,
|
533 |
+
"left": null,
|
534 |
+
"margin": null,
|
535 |
+
"max_height": null,
|
536 |
+
"max_width": null,
|
537 |
+
"min_height": null,
|
538 |
+
"min_width": null,
|
539 |
+
"object_fit": null,
|
540 |
+
"object_position": null,
|
541 |
+
"order": null,
|
542 |
+
"overflow": null,
|
543 |
+
"overflow_x": null,
|
544 |
+
"overflow_y": null,
|
545 |
+
"padding": null,
|
546 |
+
"right": null,
|
547 |
+
"top": null,
|
548 |
+
"visibility": null,
|
549 |
+
"width": null
|
550 |
+
}
|
551 |
+
},
|
552 |
+
"fac9fe5ef6a44c3587f09d516a288c43": {
|
553 |
+
"model_module": "@jupyter-widgets/controls",
|
554 |
+
"model_name": "DescriptionStyleModel",
|
555 |
+
"model_module_version": "1.5.0",
|
556 |
+
"state": {
|
557 |
+
"_model_module": "@jupyter-widgets/controls",
|
558 |
+
"_model_module_version": "1.5.0",
|
559 |
+
"_model_name": "DescriptionStyleModel",
|
560 |
+
"_view_count": null,
|
561 |
+
"_view_module": "@jupyter-widgets/base",
|
562 |
+
"_view_module_version": "1.2.0",
|
563 |
+
"_view_name": "StyleView",
|
564 |
+
"description_width": ""
|
565 |
+
}
|
566 |
+
},
|
567 |
+
"b23035bb26d841b38a646bd6f0c69652": {
|
568 |
+
"model_module": "@jupyter-widgets/base",
|
569 |
+
"model_name": "LayoutModel",
|
570 |
+
"model_module_version": "1.2.0",
|
571 |
+
"state": {
|
572 |
+
"_model_module": "@jupyter-widgets/base",
|
573 |
+
"_model_module_version": "1.2.0",
|
574 |
+
"_model_name": "LayoutModel",
|
575 |
+
"_view_count": null,
|
576 |
+
"_view_module": "@jupyter-widgets/base",
|
577 |
+
"_view_module_version": "1.2.0",
|
578 |
+
"_view_name": "LayoutView",
|
579 |
+
"align_content": null,
|
580 |
+
"align_items": null,
|
581 |
+
"align_self": null,
|
582 |
+
"border": null,
|
583 |
+
"bottom": null,
|
584 |
+
"display": null,
|
585 |
+
"flex": null,
|
586 |
+
"flex_flow": null,
|
587 |
+
"grid_area": null,
|
588 |
+
"grid_auto_columns": null,
|
589 |
+
"grid_auto_flow": null,
|
590 |
+
"grid_auto_rows": null,
|
591 |
+
"grid_column": null,
|
592 |
+
"grid_gap": null,
|
593 |
+
"grid_row": null,
|
594 |
+
"grid_template_areas": null,
|
595 |
+
"grid_template_columns": null,
|
596 |
+
"grid_template_rows": null,
|
597 |
+
"height": null,
|
598 |
+
"justify_content": null,
|
599 |
+
"justify_items": null,
|
600 |
+
"left": null,
|
601 |
+
"margin": null,
|
602 |
+
"max_height": null,
|
603 |
+
"max_width": null,
|
604 |
+
"min_height": null,
|
605 |
+
"min_width": null,
|
606 |
+
"object_fit": null,
|
607 |
+
"object_position": null,
|
608 |
+
"order": null,
|
609 |
+
"overflow": null,
|
610 |
+
"overflow_x": null,
|
611 |
+
"overflow_y": null,
|
612 |
+
"padding": null,
|
613 |
+
"right": null,
|
614 |
+
"top": null,
|
615 |
+
"visibility": null,
|
616 |
+
"width": null
|
617 |
+
}
|
618 |
+
},
|
619 |
+
"5d454a22797c405688e73c1765040618": {
|
620 |
+
"model_module": "@jupyter-widgets/controls",
|
621 |
+
"model_name": "ProgressStyleModel",
|
622 |
+
"model_module_version": "1.5.0",
|
623 |
+
"state": {
|
624 |
+
"_model_module": "@jupyter-widgets/controls",
|
625 |
+
"_model_module_version": "1.5.0",
|
626 |
+
"_model_name": "ProgressStyleModel",
|
627 |
+
"_view_count": null,
|
628 |
+
"_view_module": "@jupyter-widgets/base",
|
629 |
+
"_view_module_version": "1.2.0",
|
630 |
+
"_view_name": "StyleView",
|
631 |
+
"bar_color": null,
|
632 |
+
"description_width": ""
|
633 |
+
}
|
634 |
+
},
|
635 |
+
"bd0857febb4249bb8f7ceb9d5777ba0a": {
|
636 |
+
"model_module": "@jupyter-widgets/base",
|
637 |
+
"model_name": "LayoutModel",
|
638 |
+
"model_module_version": "1.2.0",
|
639 |
+
"state": {
|
640 |
+
"_model_module": "@jupyter-widgets/base",
|
641 |
+
"_model_module_version": "1.2.0",
|
642 |
+
"_model_name": "LayoutModel",
|
643 |
+
"_view_count": null,
|
644 |
+
"_view_module": "@jupyter-widgets/base",
|
645 |
+
"_view_module_version": "1.2.0",
|
646 |
+
"_view_name": "LayoutView",
|
647 |
+
"align_content": null,
|
648 |
+
"align_items": null,
|
649 |
+
"align_self": null,
|
650 |
+
"border": null,
|
651 |
+
"bottom": null,
|
652 |
+
"display": null,
|
653 |
+
"flex": null,
|
654 |
+
"flex_flow": null,
|
655 |
+
"grid_area": null,
|
656 |
+
"grid_auto_columns": null,
|
657 |
+
"grid_auto_flow": null,
|
658 |
+
"grid_auto_rows": null,
|
659 |
+
"grid_column": null,
|
660 |
+
"grid_gap": null,
|
661 |
+
"grid_row": null,
|
662 |
+
"grid_template_areas": null,
|
663 |
+
"grid_template_columns": null,
|
664 |
+
"grid_template_rows": null,
|
665 |
+
"height": null,
|
666 |
+
"justify_content": null,
|
667 |
+
"justify_items": null,
|
668 |
+
"left": null,
|
669 |
+
"margin": null,
|
670 |
+
"max_height": null,
|
671 |
+
"max_width": null,
|
672 |
+
"min_height": null,
|
673 |
+
"min_width": null,
|
674 |
+
"object_fit": null,
|
675 |
+
"object_position": null,
|
676 |
+
"order": null,
|
677 |
+
"overflow": null,
|
678 |
+
"overflow_x": null,
|
679 |
+
"overflow_y": null,
|
680 |
+
"padding": null,
|
681 |
+
"right": null,
|
682 |
+
"top": null,
|
683 |
+
"visibility": null,
|
684 |
+
"width": null
|
685 |
+
}
|
686 |
+
},
|
687 |
+
"f74c65693dd845d8a6da1fdd7577925f": {
|
688 |
+
"model_module": "@jupyter-widgets/controls",
|
689 |
+
"model_name": "DescriptionStyleModel",
|
690 |
+
"model_module_version": "1.5.0",
|
691 |
+
"state": {
|
692 |
+
"_model_module": "@jupyter-widgets/controls",
|
693 |
+
"_model_module_version": "1.5.0",
|
694 |
+
"_model_name": "DescriptionStyleModel",
|
695 |
+
"_view_count": null,
|
696 |
+
"_view_module": "@jupyter-widgets/base",
|
697 |
+
"_view_module_version": "1.2.0",
|
698 |
+
"_view_name": "StyleView",
|
699 |
+
"description_width": ""
|
700 |
+
}
|
701 |
+
}
|
702 |
+
}
|
703 |
+
}
|
704 |
+
},
|
705 |
+
"cells": [
|
706 |
+
{
|
707 |
+
"cell_type": "code",
|
708 |
+
"source": [
|
709 |
+
"!pip install pip install datasets"
|
710 |
+
],
|
711 |
+
"metadata": {
|
712 |
+
"colab": {
|
713 |
+
"base_uri": "https://localhost:8080/"
|
714 |
+
},
|
715 |
+
"id": "Wfi3o3CGfibZ",
|
716 |
+
"outputId": "5e023a28-ccae-4951-be60-7d839c1284c6"
|
717 |
+
},
|
718 |
+
"execution_count": 44,
|
719 |
+
"outputs": [
|
720 |
+
{
|
721 |
+
"output_type": "stream",
|
722 |
+
"name": "stdout",
|
723 |
+
"text": [
|
724 |
+
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
725 |
+
"Requirement already satisfied: pip in /usr/local/lib/python3.7/dist-packages (21.1.3)\n",
|
726 |
+
"Requirement already satisfied: install in /usr/local/lib/python3.7/dist-packages (1.3.5)\n",
|
727 |
+
"Requirement already satisfied: datasets in /usr/local/lib/python3.7/dist-packages (2.2.2)\n",
|
728 |
+
"Requirement already satisfied: xxhash in /usr/local/lib/python3.7/dist-packages (from datasets) (3.0.0)\n",
|
729 |
+
"Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.7/dist-packages (from datasets) (4.64.0)\n",
|
730 |
+
"Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from datasets) (1.3.5)\n",
|
731 |
+
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.7/dist-packages (from datasets) (1.21.6)\n",
|
732 |
+
"Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.7/dist-packages (from datasets) (2.23.0)\n",
|
733 |
+
"Requirement already satisfied: huggingface-hub<1.0.0,>=0.1.0 in /usr/local/lib/python3.7/dist-packages (from datasets) (0.7.0)\n",
|
734 |
+
"Requirement already satisfied: multiprocess in /usr/local/lib/python3.7/dist-packages (from datasets) (0.70.12.2)\n",
|
735 |
+
"Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from datasets) (21.3)\n",
|
736 |
+
"Requirement already satisfied: fsspec[http]>=2021.05.0 in /usr/local/lib/python3.7/dist-packages (from datasets) (2022.5.0)\n",
|
737 |
+
"Requirement already satisfied: dill<0.3.5 in /usr/local/lib/python3.7/dist-packages (from datasets) (0.3.4)\n",
|
738 |
+
"Requirement already satisfied: pyarrow>=6.0.0 in /usr/local/lib/python3.7/dist-packages (from datasets) (6.0.1)\n",
|
739 |
+
"Requirement already satisfied: responses<0.19 in /usr/local/lib/python3.7/dist-packages (from datasets) (0.18.0)\n",
|
740 |
+
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.7/dist-packages (from datasets) (3.8.1)\n",
|
741 |
+
"Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from datasets) (4.11.3)\n",
|
742 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets) (6.0)\n",
|
743 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets) (3.7.0)\n",
|
744 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets) (4.2.0)\n",
|
745 |
+
"Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging->datasets) (3.0.9)\n",
|
746 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (2022.5.18.1)\n",
|
747 |
+
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (2.10)\n",
|
748 |
+
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (1.25.11)\n",
|
749 |
+
"Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (3.0.4)\n",
|
750 |
+
"Requirement already satisfied: charset-normalizer<3.0,>=2.0 in /usr/local/lib/python3.7/dist-packages (from aiohttp->datasets) (2.0.12)\n",
|
751 |
+
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.7/dist-packages (from aiohttp->datasets) (1.3.0)\n",
|
752 |
+
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.7/dist-packages (from aiohttp->datasets) (21.4.0)\n",
|
753 |
+
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.7/dist-packages (from aiohttp->datasets) (6.0.2)\n",
|
754 |
+
"Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.7/dist-packages (from aiohttp->datasets) (1.7.2)\n",
|
755 |
+
"Requirement already satisfied: asynctest==0.13.0 in /usr/local/lib/python3.7/dist-packages (from aiohttp->datasets) (0.13.0)\n",
|
756 |
+
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.7/dist-packages (from aiohttp->datasets) (1.2.0)\n",
|
757 |
+
"Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.7/dist-packages (from aiohttp->datasets) (4.0.2)\n",
|
758 |
+
"Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->datasets) (3.8.0)\n",
|
759 |
+
"Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas->datasets) (2.8.2)\n",
|
760 |
+
"Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (from pandas->datasets) (2022.1)\n",
|
761 |
+
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7.3->pandas->datasets) (1.15.0)\n"
|
762 |
+
]
|
763 |
+
}
|
764 |
+
]
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"cell_type": "code",
|
768 |
+
"source": [
|
769 |
+
"!pip install transformers"
|
770 |
+
],
|
771 |
+
"metadata": {
|
772 |
+
"colab": {
|
773 |
+
"base_uri": "https://localhost:8080/"
|
774 |
+
},
|
775 |
+
"id": "PcDXuQ0Vfj8V",
|
776 |
+
"outputId": "e036b413-32d0-463e-ce13-133748eb4680"
|
777 |
+
},
|
778 |
+
"execution_count": 45,
|
779 |
+
"outputs": [
|
780 |
+
{
|
781 |
+
"output_type": "stream",
|
782 |
+
"name": "stdout",
|
783 |
+
"text": [
|
784 |
+
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
785 |
+
"Requirement already satisfied: transformers in /usr/local/lib/python3.7/dist-packages (4.19.2)\n",
|
786 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.7/dist-packages (from transformers) (6.0)\n",
|
787 |
+
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.7/dist-packages (from transformers) (4.64.0)\n",
|
788 |
+
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.7/dist-packages (from transformers) (21.3)\n",
|
789 |
+
"Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from transformers) (2.23.0)\n",
|
790 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from transformers) (3.7.0)\n",
|
791 |
+
"Requirement already satisfied: huggingface-hub<1.0,>=0.1.0 in /usr/local/lib/python3.7/dist-packages (from transformers) (0.7.0)\n",
|
792 |
+
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.7/dist-packages (from transformers) (2019.12.20)\n",
|
793 |
+
"Requirement already satisfied: tokenizers!=0.11.3,<0.13,>=0.11.1 in /usr/local/lib/python3.7/dist-packages (from transformers) (0.12.1)\n",
|
794 |
+
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.7/dist-packages (from transformers) (1.21.6)\n",
|
795 |
+
"Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from transformers) (4.11.3)\n",
|
796 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0,>=0.1.0->transformers) (4.2.0)\n",
|
797 |
+
"Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging>=20.0->transformers) (3.0.9)\n",
|
798 |
+
"Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->transformers) (3.8.0)\n",
|
799 |
+
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (1.25.11)\n",
|
800 |
+
"Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (3.0.4)\n",
|
801 |
+
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (2.10)\n",
|
802 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (2022.5.18.1)\n"
|
803 |
+
]
|
804 |
+
}
|
805 |
+
]
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"cell_type": "markdown",
|
809 |
+
"source": [
|
810 |
+
"https://huggingface.co/datasets/amazon_reviews_multi/viewer/all_languages/train\n",
|
811 |
+
"\n",
|
812 |
+
"https://stackoverflow.com/questions/70814490/uploading-models-with-custom-forward-functions-to-the-huggingface-model-hub\n",
|
813 |
+
"\n",
|
814 |
+
"https://huggingface.co/luisu0124/Amazon_review/tree/main"
|
815 |
+
],
|
816 |
+
"metadata": {
|
817 |
+
"id": "5FzhqM6OolIo"
|
818 |
+
}
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"cell_type": "code",
|
822 |
+
"source": [
|
823 |
+
"from google.colab import drive\n",
|
824 |
+
"drive.mount('/content/drive')"
|
825 |
+
],
|
826 |
+
"metadata": {
|
827 |
+
"colab": {
|
828 |
+
"base_uri": "https://localhost:8080/"
|
829 |
+
},
|
830 |
+
"id": "xW22d65ulA8P",
|
831 |
+
"outputId": "5298332f-c9e7-4788-caec-20d770f24714"
|
832 |
+
},
|
833 |
+
"execution_count": 46,
|
834 |
+
"outputs": [
|
835 |
+
{
|
836 |
+
"output_type": "stream",
|
837 |
+
"name": "stdout",
|
838 |
+
"text": [
|
839 |
+
"Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n"
|
840 |
+
]
|
841 |
+
}
|
842 |
+
]
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"cell_type": "code",
|
846 |
+
"execution_count": 47,
|
847 |
+
"metadata": {
|
848 |
+
"colab": {
|
849 |
+
"base_uri": "https://localhost:8080/"
|
850 |
+
},
|
851 |
+
"id": "ZVOTHjNifWfB",
|
852 |
+
"outputId": "72570153-20df-4551-93cf-f39a2916781e"
|
853 |
+
},
|
854 |
+
"outputs": [
|
855 |
+
{
|
856 |
+
"output_type": "stream",
|
857 |
+
"name": "stderr",
|
858 |
+
"text": [
|
859 |
+
"Some weights of the model checkpoint at google/bert_uncased_L-2_H-128_A-2 were not used when initializing BertModel: ['cls.seq_relationship.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.decoder.weight', 'cls.predictions.decoder.bias', 'cls.predictions.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.dense.weight']\n",
|
860 |
+
"- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
861 |
+
"- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
|
862 |
+
]
|
863 |
+
}
|
864 |
+
],
|
865 |
+
"source": [
|
866 |
+
"import tqdm\n",
|
867 |
+
"\n",
|
868 |
+
"from datasets import load_dataset\n",
|
869 |
+
"import transformers\n",
|
870 |
+
"from transformers import AutoTokenizer, AutoModel, BertConfig\n",
|
871 |
+
"from transformers import AdamW\n",
|
872 |
+
"from transformers import get_scheduler\n",
|
873 |
+
"\n",
|
874 |
+
"import torch\n",
|
875 |
+
"import torch.nn as nn\n",
|
876 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
877 |
+
"\n",
|
878 |
+
"# setting device to `cuda` if gpu exists\n",
|
879 |
+
"device = torch.device(\"cuda\") if torch.cuda.is_available() else torch.device(\"cpu\")\n",
|
880 |
+
"\n",
|
881 |
+
"# initialising the tokenizer and model\n",
|
882 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"google/bert_uncased_L-2_H-128_A-2\")\n",
|
883 |
+
"#tokenizer = AutoTokenizer.from_pretrained(\"pysentimiento/robertuito-sentiment-analysis\")\n",
|
884 |
+
"#bert = AutoModel.from_pretrained(\"google/bert_uncased_L-2_H-128_A-2\")\n",
|
885 |
+
"bert = AutoModel.from_pretrained(\"google/bert_uncased_L-2_H-128_A-2\")\n"
|
886 |
+
]
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"cell_type": "markdown",
|
890 |
+
"source": [
|
891 |
+
"### Cargue de dataset"
|
892 |
+
],
|
893 |
+
"metadata": {
|
894 |
+
"id": "76K5Uj0W71yU"
|
895 |
+
}
|
896 |
+
},
|
897 |
+
{
|
898 |
+
"cell_type": "code",
|
899 |
+
"source": [
|
900 |
+
"def tokenize_function(examples):\n",
|
901 |
+
" '''Function for tokenizing raw texts'''\n",
|
902 |
+
" return tokenizer(examples[\"review_body\"], padding=\"max_length\", truncation=True, max_length=128)\n",
|
903 |
+
" #return tokenizer(examples[\"text\"], padding=\"max_length\", truncation=True, max_length=128)\n",
|
904 |
+
"\n",
|
905 |
+
"\n",
|
906 |
+
"# downloading IMDB dataset from π€ `datasets`\n",
|
907 |
+
"#raw_datasets = load_dataset(\"amazon_reviews_multi\")\n",
|
908 |
+
"raw_datasets = load_dataset(\"amazon_reviews_multi\",\"es\")\n",
|
909 |
+
"\n"
|
910 |
+
],
|
911 |
+
"metadata": {
|
912 |
+
"colab": {
|
913 |
+
"base_uri": "https://localhost:8080/",
|
914 |
+
"height": 86,
|
915 |
+
"referenced_widgets": [
|
916 |
+
"429c6e78aec043d0b77eb34cafb16e1b",
|
917 |
+
"494f319e19d54a91ab454f1e472552ce",
|
918 |
+
"0d275830f6e44acc828911fbf156cc1d",
|
919 |
+
"6d0c8a919baa45eea6b23f39512968ce",
|
920 |
+
"8a10fee82fdc4690a313ad54a990555f",
|
921 |
+
"b5790264731046f495ff046be1b36ab5",
|
922 |
+
"168cd756b824410d87bf6207e3b50627",
|
923 |
+
"bd86beccde9d4e1e97d1ecb6927383e3",
|
924 |
+
"63513ddda83741528278a72af036d825",
|
925 |
+
"d012a21eb0854e1cabf8c46dbd23857c",
|
926 |
+
"7472528de85d48a1a545f3436ddb00e5"
|
927 |
+
]
|
928 |
+
},
|
929 |
+
"id": "EwVxX4Zg70Aa",
|
930 |
+
"outputId": "20e9c36f-c0af-4ad6-824f-2820573dbf4a"
|
931 |
+
},
|
932 |
+
"execution_count": 48,
|
933 |
+
"outputs": [
|
934 |
+
{
|
935 |
+
"output_type": "stream",
|
936 |
+
"name": "stderr",
|
937 |
+
"text": [
|
938 |
+
"Reusing dataset amazon_reviews_multi (/root/.cache/huggingface/datasets/amazon_reviews_multi/es/1.0.0/724e94f4b0c6c405ce7e476a6c5ef4f87db30799ad49f765094cf9770e0f7609)\n"
|
939 |
+
]
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"output_type": "display_data",
|
943 |
+
"data": {
|
944 |
+
"text/plain": [
|
945 |
+
" 0%| | 0/3 [00:00<?, ?it/s]"
|
946 |
+
],
|
947 |
+
"application/vnd.jupyter.widget-view+json": {
|
948 |
+
"version_major": 2,
|
949 |
+
"version_minor": 0,
|
950 |
+
"model_id": "429c6e78aec043d0b77eb34cafb16e1b"
|
951 |
+
}
|
952 |
+
},
|
953 |
+
"metadata": {}
|
954 |
+
}
|
955 |
+
]
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"cell_type": "code",
|
959 |
+
"source": [
|
960 |
+
"# Running tokenizing function on the raw texts\n",
|
961 |
+
"tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)\n",
|
962 |
+
"\n",
|
963 |
+
"# for simplicity I have taken only the train split\n",
|
964 |
+
"tokenized_datasets = tokenized_datasets[\"train\"].shuffle(seed=42).select(range(1000))"
|
965 |
+
],
|
966 |
+
"metadata": {
|
967 |
+
"colab": {
|
968 |
+
"base_uri": "https://localhost:8080/",
|
969 |
+
"height": 121,
|
970 |
+
"referenced_widgets": [
|
971 |
+
"f0b51ffeb656453589ecdb407522dea3",
|
972 |
+
"37a1c33bb8284ecbb33ef163fa7b7fd8",
|
973 |
+
"a2428193e74442508eb1cb33ed697c43",
|
974 |
+
"180b0aaca969493eb17aec2eba9de6b8",
|
975 |
+
"227dcef044b64faf8a91eaf4f0bb93d3",
|
976 |
+
"4e6495dc492d400bb3f3a9035087d9a4",
|
977 |
+
"fac9fe5ef6a44c3587f09d516a288c43",
|
978 |
+
"b23035bb26d841b38a646bd6f0c69652",
|
979 |
+
"5d454a22797c405688e73c1765040618",
|
980 |
+
"bd0857febb4249bb8f7ceb9d5777ba0a",
|
981 |
+
"f74c65693dd845d8a6da1fdd7577925f"
|
982 |
+
]
|
983 |
+
},
|
984 |
+
"id": "M6hDICwh7pQv",
|
985 |
+
"outputId": "f944ff63-0a40-4b3b-c7d4-b549e4bd123b"
|
986 |
+
},
|
987 |
+
"execution_count": 49,
|
988 |
+
"outputs": [
|
989 |
+
{
|
990 |
+
"output_type": "stream",
|
991 |
+
"name": "stderr",
|
992 |
+
"text": [
|
993 |
+
"Loading cached processed dataset at /root/.cache/huggingface/datasets/amazon_reviews_multi/es/1.0.0/724e94f4b0c6c405ce7e476a6c5ef4f87db30799ad49f765094cf9770e0f7609/cache-46cf96799dcd2584.arrow\n"
|
994 |
+
]
|
995 |
+
},
|
996 |
+
{
|
997 |
+
"output_type": "display_data",
|
998 |
+
"data": {
|
999 |
+
"text/plain": [
|
1000 |
+
" 0%| | 0/5 [00:00<?, ?ba/s]"
|
1001 |
+
],
|
1002 |
+
"application/vnd.jupyter.widget-view+json": {
|
1003 |
+
"version_major": 2,
|
1004 |
+
"version_minor": 0,
|
1005 |
+
"model_id": "f0b51ffeb656453589ecdb407522dea3"
|
1006 |
+
}
|
1007 |
+
},
|
1008 |
+
"metadata": {}
|
1009 |
+
},
|
1010 |
+
{
|
1011 |
+
"output_type": "stream",
|
1012 |
+
"name": "stderr",
|
1013 |
+
"text": [
|
1014 |
+
"Loading cached processed dataset at /root/.cache/huggingface/datasets/amazon_reviews_multi/es/1.0.0/724e94f4b0c6c405ce7e476a6c5ef4f87db30799ad49f765094cf9770e0f7609/cache-69ce6d7f8f0abb0e.arrow\n",
|
1015 |
+
"Loading cached shuffled indices for dataset at /root/.cache/huggingface/datasets/amazon_reviews_multi/es/1.0.0/724e94f4b0c6c405ce7e476a6c5ef4f87db30799ad49f765094cf9770e0f7609/cache-d0478a74f9a092bf.arrow\n"
|
1016 |
+
]
|
1017 |
+
}
|
1018 |
+
]
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"cell_type": "code",
|
1022 |
+
"source": [
|
1023 |
+
"\n",
|
1024 |
+
"# Now lets create the torch Dataset class\n",
|
1025 |
+
"class ClassificationDataset(Dataset):\n",
|
1026 |
+
"\n",
|
1027 |
+
" def __init__(self, dataset):\n",
|
1028 |
+
" self.dataset = dataset\n",
|
1029 |
+
"\n",
|
1030 |
+
" def __len__(self):\n",
|
1031 |
+
" return len(self.dataset)\n",
|
1032 |
+
"\n",
|
1033 |
+
" def __getitem__(self, idx):\n",
|
1034 |
+
" d = self.dataset[idx]\n",
|
1035 |
+
"\n",
|
1036 |
+
" ids = torch.tensor(d['input_ids'])\n",
|
1037 |
+
" mask = torch.tensor(d['attention_mask'])\n",
|
1038 |
+
" label = torch.tensor(d['stars'])\n",
|
1039 |
+
" #label = torch.tensor(d['label'])\n",
|
1040 |
+
" return ids, mask, label\n"
|
1041 |
+
],
|
1042 |
+
"metadata": {
|
1043 |
+
"id": "il2NccBehMG5"
|
1044 |
+
},
|
1045 |
+
"execution_count": 50,
|
1046 |
+
"outputs": []
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"cell_type": "code",
|
1050 |
+
"source": [
|
1051 |
+
"\n",
|
1052 |
+
"# Preparing the dataset and the Dataloader\n",
|
1053 |
+
"dataset = ClassificationDataset(tokenized_datasets)\n",
|
1054 |
+
"train_dataloader = DataLoader(dataset, shuffle=True, batch_size=8)\n"
|
1055 |
+
],
|
1056 |
+
"metadata": {
|
1057 |
+
"id": "HathhLEjAS1E"
|
1058 |
+
},
|
1059 |
+
"execution_count": 51,
|
1060 |
+
"outputs": []
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"cell_type": "code",
|
1064 |
+
"source": [
|
1065 |
+
"\n",
|
1066 |
+
"# Now lets create a custom Bert model\n",
|
1067 |
+
"class CustomBert(transformers.PreTrainedModel):\n",
|
1068 |
+
" '''Custom model class\n",
|
1069 |
+
" ------------------\n",
|
1070 |
+
" Now the trick is not to inherit the class from `nn.Module` but `transformers.PretrainedModel`\n",
|
1071 |
+
" Also you need to pass the model config during initialisation'''\n",
|
1072 |
+
"\n",
|
1073 |
+
" def __init__(self, bert):\n",
|
1074 |
+
" super(CustomBert, self).__init__(config=BertConfig.from_pretrained('google/bert_uncased_L-2_H-128_A-2'))\n",
|
1075 |
+
" self.bert = bert\n",
|
1076 |
+
"\n",
|
1077 |
+
" self.l1 = nn.Linear(128, 1)\n",
|
1078 |
+
"\n",
|
1079 |
+
" self.do = nn.Dropout(0.1)\n",
|
1080 |
+
" self.relu = nn.ReLU()\n",
|
1081 |
+
" self.sigmoid = nn.Sigmoid()\n",
|
1082 |
+
"\n",
|
1083 |
+
" def forward(self, sent_id, mask):\n",
|
1084 |
+
" '''For simplicity I have added only one linear layer, you can create any type of network you want'''\n",
|
1085 |
+
" \n",
|
1086 |
+
" bert_out = self.bert(sent_id, attention_mask=mask)\n",
|
1087 |
+
" o = bert_out.last_hidden_state[:,0,:]\n",
|
1088 |
+
" o = self.do(o)\n",
|
1089 |
+
" o = self.relu(o)\n",
|
1090 |
+
" o = self.l1(o)\n",
|
1091 |
+
" o = self.sigmoid(o)\n",
|
1092 |
+
" return o\n",
|
1093 |
+
"\n"
|
1094 |
+
],
|
1095 |
+
"metadata": {
|
1096 |
+
"id": "DJhL9wPMAgTC"
|
1097 |
+
},
|
1098 |
+
"execution_count": 52,
|
1099 |
+
"outputs": []
|
1100 |
+
},
|
1101 |
+
{
|
1102 |
+
"cell_type": "code",
|
1103 |
+
"source": [
|
1104 |
+
"# initialising model, loss and optimizer\n",
|
1105 |
+
"model = CustomBert(bert)\n",
|
1106 |
+
"model.to(device)\n",
|
1107 |
+
"criterion = torch.nn.BCELoss()\n",
|
1108 |
+
"optimizer = AdamW(model.parameters(), lr=5e-5)\n"
|
1109 |
+
],
|
1110 |
+
"metadata": {
|
1111 |
+
"colab": {
|
1112 |
+
"base_uri": "https://localhost:8080/"
|
1113 |
+
},
|
1114 |
+
"id": "hpiM-RFRBHcO",
|
1115 |
+
"outputId": "2a3699b4-a263-48bd-ad53-4d66c15c3bd5"
|
1116 |
+
},
|
1117 |
+
"execution_count": 53,
|
1118 |
+
"outputs": [
|
1119 |
+
{
|
1120 |
+
"output_type": "stream",
|
1121 |
+
"name": "stderr",
|
1122 |
+
"text": [
|
1123 |
+
"/usr/local/lib/python3.7/dist-packages/transformers/optimization.py:309: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
1124 |
+
" FutureWarning,\n"
|
1125 |
+
]
|
1126 |
+
}
|
1127 |
+
]
|
1128 |
+
},
|
1129 |
+
{
|
1130 |
+
"cell_type": "code",
|
1131 |
+
"source": [
|
1132 |
+
"\n",
|
1133 |
+
"# setting epochs, num_training_steps and the lr_scheduler\n",
|
1134 |
+
"num_epochs = 3\n",
|
1135 |
+
"num_training_steps = num_epochs * len(train_dataloader)\n",
|
1136 |
+
"lr_scheduler = get_scheduler(\n",
|
1137 |
+
" \"linear\",\n",
|
1138 |
+
" optimizer=optimizer,\n",
|
1139 |
+
" num_warmup_steps=0,\n",
|
1140 |
+
" num_training_steps=num_training_steps\n",
|
1141 |
+
")\n"
|
1142 |
+
],
|
1143 |
+
"metadata": {
|
1144 |
+
"id": "A60Axe6LlxAH"
|
1145 |
+
},
|
1146 |
+
"execution_count": 54,
|
1147 |
+
"outputs": []
|
1148 |
+
},
|
1149 |
+
{
|
1150 |
+
"cell_type": "code",
|
1151 |
+
"source": [
|
1152 |
+
"\n",
|
1153 |
+
"# training loop\n",
|
1154 |
+
"model.train()\n",
|
1155 |
+
"for epoch in tqdm.tqdm(range(num_epochs)):\n",
|
1156 |
+
" for batch in train_dataloader:\n",
|
1157 |
+
" ids, masks, labels = batch\n",
|
1158 |
+
" labels = labels.type(torch.float32)\n",
|
1159 |
+
" o = model(ids.to(device), masks.to(device))\n",
|
1160 |
+
" loss = criterion(torch.squeeze(o), labels.to(device))\n",
|
1161 |
+
" loss.backward()\n",
|
1162 |
+
"\n",
|
1163 |
+
" optimizer.step()\n",
|
1164 |
+
" lr_scheduler.step()\n",
|
1165 |
+
" optimizer.zero_grad()\n",
|
1166 |
+
"\n",
|
1167 |
+
"# save the tokenizer and the model in `./test-model/` directory \n",
|
1168 |
+
"tokenizer.save_pretrained(\"/content/drive/MyDrive/Models/amazon_reviews\")\n",
|
1169 |
+
"model.save_pretrained(\"/content/drive/MyDrive/Models/amazon_reviews\", push_to_hub=False)"
|
1170 |
+
],
|
1171 |
+
"metadata": {
|
1172 |
+
"colab": {
|
1173 |
+
"base_uri": "https://localhost:8080/"
|
1174 |
+
},
|
1175 |
+
"id": "wh0I7w0NBkWQ",
|
1176 |
+
"outputId": "ed82ef5d-c58c-40c6-e6e9-4bb619604835"
|
1177 |
+
},
|
1178 |
+
"execution_count": 55,
|
1179 |
+
"outputs": [
|
1180 |
+
{
|
1181 |
+
"output_type": "stream",
|
1182 |
+
"name": "stderr",
|
1183 |
+
"text": [
|
1184 |
+
"\n",
|
1185 |
+
" 0%| | 0/3 [00:00<?, ?it/s]\u001b[A\n",
|
1186 |
+
" 33%|ββββ | 1/3 [00:17<00:34, 17.41s/it]\u001b[A\n",
|
1187 |
+
" 67%|βββββββ | 2/3 [00:34<00:17, 17.27s/it]\u001b[A\n",
|
1188 |
+
"100%|ββββββββββ| 3/3 [00:51<00:00, 17.23s/it]\n"
|
1189 |
+
]
|
1190 |
+
}
|
1191 |
+
]
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"cell_type": "code",
|
1195 |
+
"source": [
|
1196 |
+
"from transformers import pipeline\n",
|
1197 |
+
"classifier = pipeline('text-classification', model='luisu0124/Amazon_review')"
|
1198 |
+
],
|
1199 |
+
"metadata": {
|
1200 |
+
"colab": {
|
1201 |
+
"base_uri": "https://localhost:8080/"
|
1202 |
+
},
|
1203 |
+
"id": "VuGgkDgv91m3",
|
1204 |
+
"outputId": "0016e442-0b31-4da4-f00a-a7233a096963"
|
1205 |
+
},
|
1206 |
+
"execution_count": 61,
|
1207 |
+
"outputs": [
|
1208 |
+
{
|
1209 |
+
"output_type": "stream",
|
1210 |
+
"name": "stderr",
|
1211 |
+
"text": [
|
1212 |
+
"Some weights of the model checkpoint at luisu0124/Amazon_review were not used when initializing BertForSequenceClassification: ['l1.weight', 'l1.bias']\n",
|
1213 |
+
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
1214 |
+
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
1215 |
+
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at luisu0124/Amazon_review and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
|
1216 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
1217 |
+
]
|
1218 |
+
}
|
1219 |
+
]
|
1220 |
+
},
|
1221 |
+
{
|
1222 |
+
"cell_type": "code",
|
1223 |
+
"source": [
|
1224 |
+
"classifier(\"Esta review es muy buena\")"
|
1225 |
+
],
|
1226 |
+
"metadata": {
|
1227 |
+
"id": "wwaHAQLHoF7J",
|
1228 |
+
"colab": {
|
1229 |
+
"base_uri": "https://localhost:8080/"
|
1230 |
+
},
|
1231 |
+
"outputId": "09d3da72-2202-4787-9435-d50226f92337"
|
1232 |
+
},
|
1233 |
+
"execution_count": 62,
|
1234 |
+
"outputs": [
|
1235 |
+
{
|
1236 |
+
"output_type": "execute_result",
|
1237 |
+
"data": {
|
1238 |
+
"text/plain": [
|
1239 |
+
"[{'label': 'POSITIVE', 'score': 0.5269547700881958}]"
|
1240 |
+
]
|
1241 |
+
},
|
1242 |
+
"metadata": {},
|
1243 |
+
"execution_count": 62
|
1244 |
+
}
|
1245 |
+
]
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"cell_type": "code",
|
1249 |
+
"source": [
|
1250 |
+
"classifier(\"Este producto es bueno pero a su vez es malo\")"
|
1251 |
+
],
|
1252 |
+
"metadata": {
|
1253 |
+
"id": "bZxF-PJRoIrt",
|
1254 |
+
"colab": {
|
1255 |
+
"base_uri": "https://localhost:8080/"
|
1256 |
+
},
|
1257 |
+
"outputId": "223523e5-590a-49f0-ef18-46a85697b6de"
|
1258 |
+
},
|
1259 |
+
"execution_count": 58,
|
1260 |
+
"outputs": [
|
1261 |
+
{
|
1262 |
+
"output_type": "execute_result",
|
1263 |
+
"data": {
|
1264 |
+
"text/plain": [
|
1265 |
+
"[{'label': 'NEGATIVE', 'score': 0.5181595683097839}]"
|
1266 |
+
]
|
1267 |
+
},
|
1268 |
+
"metadata": {},
|
1269 |
+
"execution_count": 58
|
1270 |
+
}
|
1271 |
+
]
|
1272 |
+
},
|
1273 |
+
{
|
1274 |
+
"cell_type": "code",
|
1275 |
+
"source": [
|
1276 |
+
"classifier(\"Excelente justo que buscaba\")"
|
1277 |
+
],
|
1278 |
+
"metadata": {
|
1279 |
+
"id": "CehHU_mVoR2V",
|
1280 |
+
"colab": {
|
1281 |
+
"base_uri": "https://localhost:8080/"
|
1282 |
+
},
|
1283 |
+
"outputId": "c3eaba90-87b5-4068-b5d3-04c2e2c27ca2"
|
1284 |
+
},
|
1285 |
+
"execution_count": 59,
|
1286 |
+
"outputs": [
|
1287 |
+
{
|
1288 |
+
"output_type": "execute_result",
|
1289 |
+
"data": {
|
1290 |
+
"text/plain": [
|
1291 |
+
"[{'label': 'NEGATIVE', 'score': 0.5213820338249207}]"
|
1292 |
+
]
|
1293 |
+
},
|
1294 |
+
"metadata": {},
|
1295 |
+
"execution_count": 59
|
1296 |
+
}
|
1297 |
+
]
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"cell_type": "code",
|
1301 |
+
"source": [
|
1302 |
+
"classifier(\"odio\")"
|
1303 |
+
],
|
1304 |
+
"metadata": {
|
1305 |
+
"id": "JWrTYblBoa3k",
|
1306 |
+
"colab": {
|
1307 |
+
"base_uri": "https://localhost:8080/"
|
1308 |
+
},
|
1309 |
+
"outputId": "7f63feac-c7e9-4185-ecd9-911ade565cc5"
|
1310 |
+
},
|
1311 |
+
"execution_count": 60,
|
1312 |
+
"outputs": [
|
1313 |
+
{
|
1314 |
+
"output_type": "execute_result",
|
1315 |
+
"data": {
|
1316 |
+
"text/plain": [
|
1317 |
+
"[{'label': 'NEGATIVE', 'score': 0.5219336152076721}]"
|
1318 |
+
]
|
1319 |
+
},
|
1320 |
+
"metadata": {},
|
1321 |
+
"execution_count": 60
|
1322 |
+
}
|
1323 |
+
]
|
1324 |
+
}
|
1325 |
+
]
|
1326 |
+
}
|