---
base_model: intfloat/multilingual-e5-large
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:198
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Najčešći tipovi uključuju iznad/ispod 2.5, ukupno golova, i klađenje
na broj golova u poluvremenima.
sentences:
- Koji su najčešći tipovi klađenja na golove?
- Koje kladionice u Srbiji nude DNB opciju?
- Šta je hendikep klađenje?
- source_sentence: Facebook grupe posvećene klađenju omogućavaju korisnicima da dobijaju
savete i predloge od velikih zajednica korisnika i kladioničara.
sentences:
- Šta je limit u klađenju?
- Kako se koristi Facebook za klađenje?
- Šta je cash-out opcija u uživo klađenju?
- source_sentence: Najčešći tipovi uključuju klađenje na konačan ishod, broj gemova,
broj setova, i klađenje uživo.
sentences:
- Koje su prednosti praćenja utakmica uživo?
- Koji su najčešći tipovi klađenja na tenis?
- Šta je e-novčanik?
- source_sentence: Premijum provizija je dodatna naknada koju berze kvota mogu naplatiti
igračima za specifične usluge ili dobitke.
sentences:
- Šta je premijum provizija?
- Koje su strategije za uspešno uživo klađenje?
- Kako funkcioniše klađenje na ukupan broj poena timova?
- source_sentence: '''Super Jenki'' sistem uključuje pet događaja i 26 pojedinačnih
opklada, takođe poznat kao kanadski sistem.'
sentences:
- Šta je 'Super Jenki' sistem klađenja?
- Šta je procena verovatnoće?
- Kako klađenje uživo funkcioniše u tenisu?
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-large
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.8260869565217391
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9565217391304348
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8260869565217391
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31884057971014484
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.20000000000000007
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.10000000000000003
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8260869565217391
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9565217391304348
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9271072095125116
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9021739130434783
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9021739130434783
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.8695652173913043
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8695652173913043
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333332
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.20000000000000007
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.10000000000000003
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8695652173913043
name: Cosine Recall@1
- type: cosine_recall@3
value: 1.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9461678046583877
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9275362318840579
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9275362318840579
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.8260869565217391
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8260869565217391
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333332
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.20000000000000007
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.10000000000000003
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8260869565217391
name: Cosine Recall@1
- type: cosine_recall@3
value: 1.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9301212722049728
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9057971014492753
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9057971014492753
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.782608695652174
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9565217391304348
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.782608695652174
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31884057971014484
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.20000000000000007
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.10000000000000003
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.782608695652174
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9565217391304348
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9091552965878422
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8782608695652173
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8782608695652173
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.8260869565217391
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9565217391304348
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9565217391304348
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8260869565217391
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31884057971014484
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19130434782608702
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.10000000000000003
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8260869565217391
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9565217391304348
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9565217391304348
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9164054079968976
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8894927536231884
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8894927536231884
name: Cosine Map@100
---
# SentenceTransformer based on intfloat/multilingual-e5-large
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("luka023/proba")
# Run inference
sentences = [
"'Super Jenki' sistem uključuje pet događaja i 26 pojedinačnih opklada, takođe poznat kao kanadski sistem.",
"Šta je 'Super Jenki' sistem klađenja?",
'Kako klađenje uživo funkcioniše u tenisu?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8261 |
| cosine_accuracy@3 | 0.9565 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.8261 |
| cosine_precision@3 | 0.3188 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.8261 |
| cosine_recall@3 | 0.9565 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9271 |
| cosine_mrr@10 | 0.9022 |
| **cosine_map@100** | **0.9022** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8696 |
| cosine_accuracy@3 | 1.0 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.8696 |
| cosine_precision@3 | 0.3333 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.8696 |
| cosine_recall@3 | 1.0 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9462 |
| cosine_mrr@10 | 0.9275 |
| **cosine_map@100** | **0.9275** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8261 |
| cosine_accuracy@3 | 1.0 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.8261 |
| cosine_precision@3 | 0.3333 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.8261 |
| cosine_recall@3 | 1.0 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9301 |
| cosine_mrr@10 | 0.9058 |
| **cosine_map@100** | **0.9058** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7826 |
| cosine_accuracy@3 | 0.9565 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.7826 |
| cosine_precision@3 | 0.3188 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.7826 |
| cosine_recall@3 | 0.9565 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9092 |
| cosine_mrr@10 | 0.8783 |
| **cosine_map@100** | **0.8783** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8261 |
| cosine_accuracy@3 | 0.9565 |
| cosine_accuracy@5 | 0.9565 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.8261 |
| cosine_precision@3 | 0.3188 |
| cosine_precision@5 | 0.1913 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.8261 |
| cosine_recall@3 | 0.9565 |
| cosine_recall@5 | 0.9565 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9164 |
| cosine_mrr@10 | 0.8895 |
| **cosine_map@100** | **0.8895** |
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 198 training samples
* Columns: positive
and anchor
* Approximate statistics based on the first 198 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
Klađenje na ukupan broj poena timova podrazumeva predviđanje da li će jedan tim postići više ili manje poena od postavljene granice, nezavisno od konačnog ishoda.
| Kako funkcioniše klađenje na ukupan broj poena timova?
|
| Konačan ishod podrazumeva klađenje na to ko će pobediti u utakmici, pri čemu postoje tri mogućnosti: pobeda domaćina, pobeda gosta ili nerešeno.
| Šta znači klađenje na konačan ishod?
|
| Patent opklada uključuje tri događaja sa ukupno sedam pojedinačnih opklada: tri singl, tri dubl i jedna trostruka opklada.
| Šta je patent opklada?
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters