lukasmoeller
commited on
Commit
•
82a66d3
1
Parent(s):
d722848
Upload ReplitLM
Browse files- config.json +46 -0
- configuration_replit_lm.py +168 -0
- generation_config.json +5 -0
- pytorch_model-00001-of-00002.bin +3 -0
- pytorch_model-00002-of-00002.bin +3 -0
- pytorch_model.bin.index.json +201 -0
config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "replit/replit-code-v1-3b",
|
3 |
+
"alibi": true,
|
4 |
+
"alibi_bias_max": 8,
|
5 |
+
"architectures": [
|
6 |
+
"ReplitLM"
|
7 |
+
],
|
8 |
+
"attn_clip_qkv": null,
|
9 |
+
"attn_impl": "torch",
|
10 |
+
"attn_pdrop": 0,
|
11 |
+
"attn_qk_ln": false,
|
12 |
+
"attn_uses_sequence_id": false,
|
13 |
+
"auto_map": {
|
14 |
+
"AutoConfig": "configuration_replit_lm.ReplitLMConfig",
|
15 |
+
"AutoModelForCausalLM": "replit_lm.ReplitLM"
|
16 |
+
},
|
17 |
+
"d_model": 2560,
|
18 |
+
"emb_init_std": null,
|
19 |
+
"emb_init_uniform_lim": null,
|
20 |
+
"emb_pdrop": 0,
|
21 |
+
"embedding_fraction": 1.0,
|
22 |
+
"fan_mode": "fan_in",
|
23 |
+
"init_device": "cpu",
|
24 |
+
"init_div_is_residual": true,
|
25 |
+
"init_gain": 0,
|
26 |
+
"init_nonlinearity": "relu",
|
27 |
+
"init_std": 0.02,
|
28 |
+
"logit_scale": null,
|
29 |
+
"low_precision_layernorm": true,
|
30 |
+
"max_seq_len": 2048,
|
31 |
+
"mlp_ratio": 4,
|
32 |
+
"model_type": "replit_lm",
|
33 |
+
"n_heads": 32,
|
34 |
+
"n_layers": 32,
|
35 |
+
"no_bias": true,
|
36 |
+
"param_init_fn": "kaiming_normal_",
|
37 |
+
"prefix_lm": false,
|
38 |
+
"resid_pdrop": 0,
|
39 |
+
"softmax_scale": null,
|
40 |
+
"tokenizer_name": "replit/replit-code-v1-3b",
|
41 |
+
"torch_dtype": "float32",
|
42 |
+
"transformers_version": "4.28.1",
|
43 |
+
"use_cache": false,
|
44 |
+
"verbose": 0,
|
45 |
+
"vocab_size": 32768
|
46 |
+
}
|
configuration_replit_lm.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 MosaicML Examples authors
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
"""Forked for ReplitLM"""
|
5 |
+
|
6 |
+
"""A HuggingFace-style model configuration."""
|
7 |
+
|
8 |
+
|
9 |
+
from typing import Optional, Tuple, Union
|
10 |
+
from transformers import PretrainedConfig
|
11 |
+
class ReplitLMConfig(PretrainedConfig):
|
12 |
+
model_type = 'replit_lm'
|
13 |
+
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
d_model: int = 2048,
|
17 |
+
n_heads: int = 16,
|
18 |
+
n_layers: int = 24,
|
19 |
+
mlp_ratio: int = 4,
|
20 |
+
max_seq_len: int = 2048,
|
21 |
+
vocab_size: int = 50368,
|
22 |
+
attn_pdrop: float = 0.0,
|
23 |
+
resid_pdrop: float = 0.0,
|
24 |
+
emb_pdrop: float = 0.0,
|
25 |
+
attn_impl: str = 'triton',
|
26 |
+
attn_qk_ln: bool = False,
|
27 |
+
attn_clip_qkv: Optional[float] = None,
|
28 |
+
softmax_scale: Optional[float] = None,
|
29 |
+
prefix_lm: Optional[bool] = False,
|
30 |
+
attn_uses_sequence_id: Optional[bool] = False,
|
31 |
+
alibi: bool = False,
|
32 |
+
alibi_bias_max: int = 8,
|
33 |
+
init_device: str = 'cpu',
|
34 |
+
logit_scale: Optional[Union[float, str]] = None,
|
35 |
+
no_bias: bool = False,
|
36 |
+
verbose: int = 0,
|
37 |
+
param_init_fn: str = 'kaiming_normal_',
|
38 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
39 |
+
init_std: float = 0.02,
|
40 |
+
emb_init_std: Optional[float] = None,
|
41 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float],
|
42 |
+
float]] = None,
|
43 |
+
init_gain: float = 0,
|
44 |
+
fan_mode: str = 'fan_in',
|
45 |
+
init_nonlinearity: str = 'relu',
|
46 |
+
embedding_fraction: float = 1.0,
|
47 |
+
low_precision_layernorm: bool = True,
|
48 |
+
use_cache: bool = False,
|
49 |
+
**kwargs,
|
50 |
+
):
|
51 |
+
"""The ReplitLM configuration class.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
d_model (int): The size of the embedding dimension of the model.
|
55 |
+
n_heads (int): The number of attention heads.
|
56 |
+
n_layers (int): The number of layers in the model.
|
57 |
+
mlp_ratio (int): The ratio of the up/down scale in the MLP.
|
58 |
+
max_seq_len (int): The maximum sequence length of the model.
|
59 |
+
vocab_size (int): The size of the vocabulary.
|
60 |
+
attn_pdrop (float): The dropout probability for the attention layers.
|
61 |
+
resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
|
62 |
+
emb_pdrop (float): The dropout probability for the embedding layer.
|
63 |
+
attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
|
64 |
+
attn_qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
|
65 |
+
attn_clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
|
66 |
+
this value.
|
67 |
+
softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
|
68 |
+
use the default scale of ``1/sqrt(d_keys)``.
|
69 |
+
prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an
|
70 |
+
extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix
|
71 |
+
can attend to one another bi-directionally. Tokens outside the prefix use causal attention.
|
72 |
+
attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id.
|
73 |
+
When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
|
74 |
+
which sub-sequence each token belongs to.
|
75 |
+
Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
|
76 |
+
alibi (bool): Whether to use the alibi bias instead of position embeddings.
|
77 |
+
alibi_bias_max (int): The maximum value of the alibi bias.
|
78 |
+
init_device (str): The device to use for parameter initialization.
|
79 |
+
logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
|
80 |
+
no_bias (bool): Whether to use bias in all layers.
|
81 |
+
verbose (int): The verbosity level. 0 is silent.
|
82 |
+
param_init_fn (str): The parameter initialization scheme to use. One of 'default_', 'baseline_', 'kaiming_uniform_',
|
83 |
+
'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or 'xavier_normal_'.
|
84 |
+
init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True.
|
85 |
+
init_std (float): The standard deviation of the normal distribution used to initialize the model,
|
86 |
+
if using the baseline_ parameter initialization scheme.
|
87 |
+
emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer.
|
88 |
+
emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution
|
89 |
+
used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``.
|
90 |
+
init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes.
|
91 |
+
fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes.
|
92 |
+
init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
|
93 |
+
embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
|
94 |
+
low_precision_layernorm (bool): Whether to use low precision layer normalization.
|
95 |
+
use_cache (bool): Whether or not the model should return the last key/values attentions
|
96 |
+
"""
|
97 |
+
self.d_model = d_model
|
98 |
+
self.n_heads = n_heads
|
99 |
+
self.n_layers = n_layers
|
100 |
+
self.mlp_ratio = mlp_ratio
|
101 |
+
self.max_seq_len = max_seq_len
|
102 |
+
self.vocab_size = vocab_size
|
103 |
+
self.attn_pdrop = attn_pdrop
|
104 |
+
self.resid_pdrop = resid_pdrop
|
105 |
+
self.emb_pdrop = emb_pdrop
|
106 |
+
self.attn_impl = attn_impl
|
107 |
+
self.attn_qk_ln = attn_qk_ln
|
108 |
+
self.attn_clip_qkv = attn_clip_qkv
|
109 |
+
self.softmax_scale = softmax_scale
|
110 |
+
self.prefix_lm = prefix_lm
|
111 |
+
self.attn_uses_sequence_id = attn_uses_sequence_id
|
112 |
+
self.alibi = alibi
|
113 |
+
self.alibi_bias_max = alibi_bias_max
|
114 |
+
self.init_device = init_device
|
115 |
+
self.logit_scale = logit_scale
|
116 |
+
self.no_bias = no_bias
|
117 |
+
self.verbose = verbose
|
118 |
+
self.param_init_fn = param_init_fn
|
119 |
+
self.init_div_is_residual = init_div_is_residual
|
120 |
+
self.init_std = init_std
|
121 |
+
self.emb_init_std = emb_init_std
|
122 |
+
self.emb_init_uniform_lim = emb_init_uniform_lim
|
123 |
+
self.init_std = init_std
|
124 |
+
self.init_gain = init_gain
|
125 |
+
self.fan_mode = fan_mode
|
126 |
+
self.init_nonlinearity = init_nonlinearity
|
127 |
+
self.embedding_fraction = embedding_fraction
|
128 |
+
self.low_precision_layernorm = low_precision_layernorm
|
129 |
+
self.use_cache = use_cache
|
130 |
+
if 'name' in kwargs:
|
131 |
+
del kwargs['name']
|
132 |
+
if 'loss_fn' in kwargs:
|
133 |
+
del kwargs['loss_fn']
|
134 |
+
super().__init__(**kwargs)
|
135 |
+
|
136 |
+
self._validate_config()
|
137 |
+
|
138 |
+
def _validate_config(self):
|
139 |
+
if self.d_model % self.n_heads != 0:
|
140 |
+
raise ValueError('d_model must be divisible by n_heads')
|
141 |
+
if any(prob < 0 or prob > 1
|
142 |
+
for prob in [self.attn_pdrop, self.resid_pdrop, self.emb_pdrop]):
|
143 |
+
raise ValueError(
|
144 |
+
'attn_pdrop, resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1'
|
145 |
+
)
|
146 |
+
if self.attn_impl not in ['torch', 'flash', 'triton']:
|
147 |
+
raise ValueError(f'Unknown attn_impl={self.attn_impl}')
|
148 |
+
if self.prefix_lm and self.attn_impl not in ['torch', 'triton']:
|
149 |
+
raise NotImplementedError(
|
150 |
+
'prefix_lm only implemented with torch and triton attention.')
|
151 |
+
if self.alibi and self.attn_impl not in ['torch', 'triton']:
|
152 |
+
raise NotImplementedError(
|
153 |
+
'alibi only implemented with torch and triton attention.')
|
154 |
+
if self.attn_uses_sequence_id and self.attn_impl not in [
|
155 |
+
'torch', 'triton'
|
156 |
+
]:
|
157 |
+
raise NotImplementedError(
|
158 |
+
'attn_uses_sequence_id only implemented with torch and triton attention.'
|
159 |
+
)
|
160 |
+
if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
|
161 |
+
raise ValueError(
|
162 |
+
'model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!'
|
163 |
+
)
|
164 |
+
if isinstance(self.logit_scale,
|
165 |
+
str) and self.logit_scale != 'inv_sqrt_d_model':
|
166 |
+
raise ValueError(
|
167 |
+
f"{self.logit_scale=} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'."
|
168 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.28.1",
|
4 |
+
"use_cache": false
|
5 |
+
}
|
pytorch_model-00001-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ace7a3b244a7802aec01e040880c6f1bd2bfb5099732ba2e30b164e9ba9c987d
|
3 |
+
size 9983144733
|
pytorch_model-00002-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:962355661d4729fa5c6529699fcea195da3b79cadd346f42dcb7678d82c96e48
|
3 |
+
size 419464289
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 10402539520
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"transformer.blocks.0.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
7 |
+
"transformer.blocks.0.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
8 |
+
"transformer.blocks.0.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
9 |
+
"transformer.blocks.0.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
10 |
+
"transformer.blocks.0.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
11 |
+
"transformer.blocks.0.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
12 |
+
"transformer.blocks.1.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
13 |
+
"transformer.blocks.1.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
14 |
+
"transformer.blocks.1.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
15 |
+
"transformer.blocks.1.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
16 |
+
"transformer.blocks.1.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
17 |
+
"transformer.blocks.1.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
18 |
+
"transformer.blocks.10.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
19 |
+
"transformer.blocks.10.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
20 |
+
"transformer.blocks.10.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
21 |
+
"transformer.blocks.10.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
22 |
+
"transformer.blocks.10.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
23 |
+
"transformer.blocks.10.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
24 |
+
"transformer.blocks.11.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
25 |
+
"transformer.blocks.11.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
26 |
+
"transformer.blocks.11.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
27 |
+
"transformer.blocks.11.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
28 |
+
"transformer.blocks.11.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
29 |
+
"transformer.blocks.11.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
30 |
+
"transformer.blocks.12.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
31 |
+
"transformer.blocks.12.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
32 |
+
"transformer.blocks.12.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
33 |
+
"transformer.blocks.12.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
34 |
+
"transformer.blocks.12.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
35 |
+
"transformer.blocks.12.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
36 |
+
"transformer.blocks.13.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
37 |
+
"transformer.blocks.13.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
38 |
+
"transformer.blocks.13.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
39 |
+
"transformer.blocks.13.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
40 |
+
"transformer.blocks.13.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
41 |
+
"transformer.blocks.13.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
42 |
+
"transformer.blocks.14.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
43 |
+
"transformer.blocks.14.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
44 |
+
"transformer.blocks.14.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
45 |
+
"transformer.blocks.14.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
46 |
+
"transformer.blocks.14.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
47 |
+
"transformer.blocks.14.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
48 |
+
"transformer.blocks.15.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
49 |
+
"transformer.blocks.15.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
50 |
+
"transformer.blocks.15.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
51 |
+
"transformer.blocks.15.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
52 |
+
"transformer.blocks.15.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
53 |
+
"transformer.blocks.15.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
54 |
+
"transformer.blocks.16.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
55 |
+
"transformer.blocks.16.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
56 |
+
"transformer.blocks.16.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
57 |
+
"transformer.blocks.16.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
58 |
+
"transformer.blocks.16.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
59 |
+
"transformer.blocks.16.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
60 |
+
"transformer.blocks.17.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
61 |
+
"transformer.blocks.17.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
62 |
+
"transformer.blocks.17.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
63 |
+
"transformer.blocks.17.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
64 |
+
"transformer.blocks.17.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
65 |
+
"transformer.blocks.17.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
66 |
+
"transformer.blocks.18.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
67 |
+
"transformer.blocks.18.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
68 |
+
"transformer.blocks.18.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
69 |
+
"transformer.blocks.18.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
70 |
+
"transformer.blocks.18.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
71 |
+
"transformer.blocks.18.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
72 |
+
"transformer.blocks.19.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
73 |
+
"transformer.blocks.19.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
74 |
+
"transformer.blocks.19.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
75 |
+
"transformer.blocks.19.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
76 |
+
"transformer.blocks.19.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
77 |
+
"transformer.blocks.19.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
78 |
+
"transformer.blocks.2.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
79 |
+
"transformer.blocks.2.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
80 |
+
"transformer.blocks.2.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
81 |
+
"transformer.blocks.2.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
82 |
+
"transformer.blocks.2.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
83 |
+
"transformer.blocks.2.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
84 |
+
"transformer.blocks.20.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
85 |
+
"transformer.blocks.20.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
86 |
+
"transformer.blocks.20.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
87 |
+
"transformer.blocks.20.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
88 |
+
"transformer.blocks.20.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
89 |
+
"transformer.blocks.20.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
90 |
+
"transformer.blocks.21.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
91 |
+
"transformer.blocks.21.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
92 |
+
"transformer.blocks.21.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
93 |
+
"transformer.blocks.21.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
94 |
+
"transformer.blocks.21.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
95 |
+
"transformer.blocks.21.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
96 |
+
"transformer.blocks.22.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
97 |
+
"transformer.blocks.22.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
98 |
+
"transformer.blocks.22.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
99 |
+
"transformer.blocks.22.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
100 |
+
"transformer.blocks.22.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
101 |
+
"transformer.blocks.22.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
102 |
+
"transformer.blocks.23.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
103 |
+
"transformer.blocks.23.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
104 |
+
"transformer.blocks.23.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
105 |
+
"transformer.blocks.23.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
106 |
+
"transformer.blocks.23.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
107 |
+
"transformer.blocks.23.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
108 |
+
"transformer.blocks.24.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
109 |
+
"transformer.blocks.24.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
110 |
+
"transformer.blocks.24.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
111 |
+
"transformer.blocks.24.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
112 |
+
"transformer.blocks.24.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
113 |
+
"transformer.blocks.24.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
114 |
+
"transformer.blocks.25.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
115 |
+
"transformer.blocks.25.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
116 |
+
"transformer.blocks.25.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
117 |
+
"transformer.blocks.25.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
118 |
+
"transformer.blocks.25.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
119 |
+
"transformer.blocks.25.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
120 |
+
"transformer.blocks.26.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
121 |
+
"transformer.blocks.26.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
122 |
+
"transformer.blocks.26.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
123 |
+
"transformer.blocks.26.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
124 |
+
"transformer.blocks.26.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
125 |
+
"transformer.blocks.26.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
126 |
+
"transformer.blocks.27.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
127 |
+
"transformer.blocks.27.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
128 |
+
"transformer.blocks.27.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
129 |
+
"transformer.blocks.27.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
130 |
+
"transformer.blocks.27.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
131 |
+
"transformer.blocks.27.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
132 |
+
"transformer.blocks.28.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
133 |
+
"transformer.blocks.28.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
134 |
+
"transformer.blocks.28.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
135 |
+
"transformer.blocks.28.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
136 |
+
"transformer.blocks.28.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
137 |
+
"transformer.blocks.28.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
138 |
+
"transformer.blocks.29.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
139 |
+
"transformer.blocks.29.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
140 |
+
"transformer.blocks.29.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
141 |
+
"transformer.blocks.29.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
142 |
+
"transformer.blocks.29.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
143 |
+
"transformer.blocks.29.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
144 |
+
"transformer.blocks.3.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
145 |
+
"transformer.blocks.3.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
146 |
+
"transformer.blocks.3.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
147 |
+
"transformer.blocks.3.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
148 |
+
"transformer.blocks.3.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
149 |
+
"transformer.blocks.3.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
150 |
+
"transformer.blocks.30.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
151 |
+
"transformer.blocks.30.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
152 |
+
"transformer.blocks.30.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
153 |
+
"transformer.blocks.30.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
154 |
+
"transformer.blocks.30.mlp.mlp_down.weight": "pytorch_model-00002-of-00002.bin",
|
155 |
+
"transformer.blocks.30.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
156 |
+
"transformer.blocks.31.attn.Wqkv.weight": "pytorch_model-00002-of-00002.bin",
|
157 |
+
"transformer.blocks.31.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
158 |
+
"transformer.blocks.31.ln_1.weight": "pytorch_model-00002-of-00002.bin",
|
159 |
+
"transformer.blocks.31.ln_2.weight": "pytorch_model-00002-of-00002.bin",
|
160 |
+
"transformer.blocks.31.mlp.mlp_down.weight": "pytorch_model-00002-of-00002.bin",
|
161 |
+
"transformer.blocks.31.mlp.mlp_up.weight": "pytorch_model-00002-of-00002.bin",
|
162 |
+
"transformer.blocks.4.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
163 |
+
"transformer.blocks.4.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
164 |
+
"transformer.blocks.4.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
165 |
+
"transformer.blocks.4.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
166 |
+
"transformer.blocks.4.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
167 |
+
"transformer.blocks.4.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
168 |
+
"transformer.blocks.5.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
169 |
+
"transformer.blocks.5.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
170 |
+
"transformer.blocks.5.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
171 |
+
"transformer.blocks.5.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
172 |
+
"transformer.blocks.5.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
173 |
+
"transformer.blocks.5.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
174 |
+
"transformer.blocks.6.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
175 |
+
"transformer.blocks.6.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
176 |
+
"transformer.blocks.6.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
177 |
+
"transformer.blocks.6.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
178 |
+
"transformer.blocks.6.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
179 |
+
"transformer.blocks.6.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
180 |
+
"transformer.blocks.7.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
181 |
+
"transformer.blocks.7.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
182 |
+
"transformer.blocks.7.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
183 |
+
"transformer.blocks.7.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
184 |
+
"transformer.blocks.7.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
185 |
+
"transformer.blocks.7.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
186 |
+
"transformer.blocks.8.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
187 |
+
"transformer.blocks.8.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
188 |
+
"transformer.blocks.8.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
189 |
+
"transformer.blocks.8.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
190 |
+
"transformer.blocks.8.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
191 |
+
"transformer.blocks.8.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
192 |
+
"transformer.blocks.9.attn.Wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
193 |
+
"transformer.blocks.9.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
194 |
+
"transformer.blocks.9.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
195 |
+
"transformer.blocks.9.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
196 |
+
"transformer.blocks.9.mlp.mlp_down.weight": "pytorch_model-00001-of-00002.bin",
|
197 |
+
"transformer.blocks.9.mlp.mlp_up.weight": "pytorch_model-00001-of-00002.bin",
|
198 |
+
"transformer.ln_f.weight": "pytorch_model-00002-of-00002.bin",
|
199 |
+
"transformer.wte.weight": "pytorch_model-00001-of-00002.bin"
|
200 |
+
}
|
201 |
+
}
|