--- license: apache-2.0 base_model: t5-base tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: t5-base_cola_densedense_baseline results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Accuracy type: accuracy value: 0.835091083413231 --- # t5-base_cola_densedense_baseline This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5187 - Accuracy: 0.8351 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - distributed_type: tpu - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - total_eval_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5117 | 1.49 | 50 | 0.5002 | 0.7977 | | 0.3559 | 2.99 | 100 | 0.4575 | 0.8207 | | 0.3103 | 4.48 | 150 | 0.4466 | 0.8255 | | 0.2928 | 5.97 | 200 | 0.5051 | 0.8303 | | 0.2085 | 7.46 | 250 | 0.5187 | 0.8351 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3