lunahr commited on
Commit
cba59ac
1 Parent(s): 3ff4cd2

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +312 -0
README.md ADDED
@@ -0,0 +1,312 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: llama3
5
+ tags:
6
+ - Llama-3
7
+ - instruct
8
+ - finetune
9
+ - chatml
10
+ - gpt4
11
+ - synthetic data
12
+ - distillation
13
+ - function calling
14
+ - json mode
15
+ - axolotl
16
+ - roleplaying
17
+ - chat
18
+ base_model: NousResearch/Hermes-3-Llama-3.2-3B
19
+ widget:
20
+ - example_title: Hermes 3
21
+ messages:
22
+ - role: system
23
+ content: >-
24
+ You are a sentient, superintelligent artificial general intelligence, here
25
+ to teach and assist me.
26
+ - role: user
27
+ content: >-
28
+ Write a short story about Goku discovering kirby has teamed up with Majin
29
+ Buu to destroy the world.
30
+ model-index:
31
+ - name: Hermes-3-Llama-3.2-3B
32
+ results: []
33
+ library_name: transformers
34
+ ---
35
+
36
+
37
+ # Hermes 3 - Llama-3.2 3B (Abliterated)
38
+ An abliterated version of the below model:
39
+
40
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/-kj_KflXsdpcZoTQsvx7W.jpeg)
41
+
42
+
43
+ ## Model Description
44
+
45
+ Hermes 3 3B is a small but mighty new addition to the Hermes series of LLMs by Nous Research, and is Nous's first fine-tune in this parameter class.
46
+
47
+ For details on Hermes 3, please see the [**Hermes 3 Technical Report**](https://arxiv.org/abs/2408.11857).
48
+
49
+ Hermes 3 is a generalist language model with many improvements over Hermes 2, including advanced agentic capabilities, much better roleplaying, reasoning, multi-turn conversation, long context coherence, and improvements across the board.
50
+
51
+ Hermes 3 3B is a full parameter fine-tune of the Llama-3.2 3B foundation model, focused on aligning LLMs to the user, with powerful steering capabilities and control given to the end user.
52
+
53
+ The Hermes 3 series builds and expands on the Hermes 2 set of capabilities, including more powerful and reliable function calling and structured output capabilities, generalist assistant capabilities, and improved code generation skills.
54
+
55
+ Hermes 3 3B was trained on H100s on **LambdaLabs GPU Cloud**. [Check out LambdaLabs' cloud offerings here](https://lambdalabs.com/service/gpu-cloud).
56
+
57
+ # Benchmarks
58
+
59
+ Hermes 3 is competitive, if not superior, to Llama-3.1 Instruct models at general capabilities, with varying strengths and weaknesses attributable between the two.
60
+
61
+
62
+ ## GPT4All:
63
+ ```
64
+ | Task |Version| Metric |Value | |Stderr|
65
+ |-------------|------:|--------|-----:|---|-----:|
66
+ |arc_challenge| 0|acc |0.5529|± |0.0145|
67
+ | | |acc_norm|0.5870|± |0.0144|
68
+ |arc_easy | 0|acc |0.8371|± |0.0076|
69
+ | | |acc_norm|0.8144|± |0.0080|
70
+ |boolq | 1|acc |0.8599|± |0.0061|
71
+ |hellaswag | 0|acc |0.6133|± |0.0049|
72
+ | | |acc_norm|0.7989|± |0.0040|
73
+ |openbookqa | 0|acc |0.3940|± |0.0219|
74
+ | | |acc_norm|0.4680|± |0.0223|
75
+ |piqa | 0|acc |0.8063|± |0.0092|
76
+ | | |acc_norm|0.8156|± |0.0090|
77
+ |winogrande | 0|acc |0.7372|± |0.0124|
78
+ ```
79
+
80
+ Average: 72.59
81
+
82
+ ## AGIEval:
83
+ ```
84
+ | Task |Version| Metric |Value | |Stderr|
85
+ |------------------------------|------:|--------|-----:|---|-----:|
86
+ |agieval_aqua_rat | 0|acc |0.2441|± |0.0270|
87
+ | | |acc_norm|0.2441|± |0.0270|
88
+ |agieval_logiqa_en | 0|acc |0.3687|± |0.0189|
89
+ | | |acc_norm|0.3840|± |0.0191|
90
+ |agieval_lsat_ar | 0|acc |0.2304|± |0.0278|
91
+ | | |acc_norm|0.2174|± |0.0273|
92
+ |agieval_lsat_lr | 0|acc |0.5471|± |0.0221|
93
+ | | |acc_norm|0.5373|± |0.0221|
94
+ |agieval_lsat_rc | 0|acc |0.6617|± |0.0289|
95
+ | | |acc_norm|0.6357|± |0.0294|
96
+ |agieval_sat_en | 0|acc |0.7670|± |0.0295|
97
+ | | |acc_norm|0.7379|± |0.0307|
98
+ |agieval_sat_en_without_passage| 0|acc |0.4417|± |0.0347|
99
+ | | |acc_norm|0.4223|± |0.0345|
100
+ |agieval_sat_math | 0|acc |0.4000|± |0.0331|
101
+ | | |acc_norm|0.3455|± |0.0321|
102
+ ```
103
+
104
+ Average: 44.05
105
+
106
+ ## BigBench:
107
+
108
+ ```
109
+
110
+ | Task |Version| Metric |Value | |Stderr|
111
+ |------------------------------------------------|------:|---------------------|-----:|---|-----:|
112
+ |bigbench_causal_judgement | 0|multiple_choice_grade|0.6000|± |0.0356|
113
+ |bigbench_date_understanding | 0|multiple_choice_grade|0.6585|± |0.0247|
114
+ |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.3178|± |0.0290|
115
+ |bigbench_geometric_shapes | 0|multiple_choice_grade|0.2340|± |0.0224|
116
+ | | |exact_str_match |0.0000|± |0.0000|
117
+ |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.2980|± |0.0205|
118
+ |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.2057|± |0.0153|
119
+ |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.5367|± |0.0288|
120
+ |bigbench_movie_recommendation | 0|multiple_choice_grade|0.4040|± |0.0220|
121
+ |bigbench_navigate | 0|multiple_choice_grade|0.4970|± |0.0158|
122
+ |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.7075|± |0.0102|
123
+ |bigbench_ruin_names | 0|multiple_choice_grade|0.4821|± |0.0236|
124
+ |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.2295|± |0.0133|
125
+ |bigbench_snarks | 0|multiple_choice_grade|0.6906|± |0.0345|
126
+ |bigbench_sports_understanding | 0|multiple_choice_grade|0.5375|± |0.0159|
127
+ |bigbench_temporal_sequences | 0|multiple_choice_grade|0.6270|± |0.0153|
128
+ |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2216|± |0.0118|
129
+ |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1594|± |0.0088|
130
+ |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.5367|± |0.0288|
131
+ ```
132
+
133
+ Average: 44.13
134
+
135
+
136
+ # Prompt Format
137
+
138
+ Hermes 3 uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue.
139
+
140
+ System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model.
141
+
142
+ This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns.
143
+
144
+ This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI.
145
+
146
+ Prompt with system instruction (Use whatever system prompt you like, this is just an example!):
147
+ ```
148
+ <|im_start|>system
149
+ You are Hermes 3, a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|>
150
+ <|im_start|>user
151
+ Hello, who are you?<|im_end|>
152
+ <|im_start|>assistant
153
+ Hi there! My name is Hermes 3, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|>
154
+ ```
155
+
156
+ This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
157
+ `tokenizer.apply_chat_template()` method:
158
+
159
+ ```python
160
+ messages = [
161
+ {"role": "system", "content": "You are Hermes 3."},
162
+ {"role": "user", "content": "Hello, who are you?"}
163
+ ]
164
+ gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
165
+ model.generate(**gen_input)
166
+ ```
167
+
168
+ When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure
169
+ that the model continues with an assistant response.
170
+
171
+ To utilize the prompt format without a system prompt, simply leave the line out.
172
+
173
+
174
+ ## Prompt Format for Function Calling
175
+
176
+ # Note: This version uses USER as both the user prompt and the tool response role. This is due to a bug we experienced when training. It will require modification to the function calling code!
177
+
178
+ Our model was trained on specific system prompts and structures for Function Calling.
179
+
180
+ You should use the system role with this message, followed by a function signature json as this example shows here.
181
+ ```
182
+ <|im_start|>system
183
+ You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: <tools> {"type": "function", "function": {"name": "get_stock_fundamentals", "description": "get_stock_fundamentals(symbol: str) -> dict - Get fundamental data for a given stock symbol using yfinance API.\\n\\n Args:\\n symbol (str): The stock symbol.\\n\\n Returns:\\n dict: A dictionary containing fundamental data.\\n Keys:\\n - \'symbol\': The stock symbol.\\n - \'company_name\': The long name of the company.\\n - \'sector\': The sector to which the company belongs.\\n - \'industry\': The industry to which the company belongs.\\n - \'market_cap\': The market capitalization of the company.\\n - \'pe_ratio\': The forward price-to-earnings ratio.\\n - \'pb_ratio\': The price-to-book ratio.\\n - \'dividend_yield\': The dividend yield.\\n - \'eps\': The trailing earnings per share.\\n - \'beta\': The beta value of the stock.\\n - \'52_week_high\': The 52-week high price of the stock.\\n - \'52_week_low\': The 52-week low price of the stock.", "parameters": {"type": "object", "properties": {"symbol": {"type": "string"}}, "required": ["symbol"]}}} </tools> Use the following pydantic model json schema for each tool call you will make: {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"} For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
184
+ <tool_call>
185
+ {"arguments": <args-dict>, "name": <function-name>}
186
+ </tool_call><|im_end|>
187
+ ```
188
+
189
+ To complete the function call, create a user prompt that follows the above system prompt, like so:
190
+ ```
191
+ <|im_start|>user
192
+ Fetch the stock fundamentals data for Tesla (TSLA)<|im_end|>
193
+ ```
194
+
195
+ The model will then generate a tool call, which your inference code must parse, and plug into a function (see example inference code here: https://github.com/NousResearch/Hermes-Function-Calling):
196
+ ```
197
+ <|im_start|>assistant
198
+ <tool_call>
199
+ {"arguments": {"symbol": "TSLA"}, "name": "get_stock_fundamentals"}
200
+ </tool_call><|im_end|>
201
+ ```
202
+
203
+ Once you parse the tool call, call the api and get the returned values for the call, and pass it back in as a new role, `tool` like so:
204
+ ```
205
+ <|im_start|>user
206
+ <tool_response>
207
+ {"name": "get_stock_fundamentals", "content": {'symbol': 'TSLA', 'company_name': 'Tesla, Inc.', 'sector': 'Consumer Cyclical', 'industry': 'Auto Manufacturers', 'market_cap': 611384164352, 'pe_ratio': 49.604652, 'pb_ratio': 9.762013, 'dividend_yield': None, 'eps': 4.3, 'beta': 2.427, '52_week_high': 299.29, '52_week_low': 152.37}}
208
+ </tool_response>
209
+ <|im_end|>
210
+ ```
211
+
212
+ The assistant will then read in that data from the function's response, and generate a natural language response:
213
+ ```
214
+ <|im_start|>assistant
215
+ The stock fundamentals data for Tesla (TSLA) are as follows:
216
+ - **Symbol**: TSLA
217
+ - **Company Name**: Tesla, Inc.
218
+ - **Sector**: Consumer Cyclical
219
+ - **Industry**: Auto Manufacturers
220
+ - **Market Capitalization**: $566,160,130,480
221
+ - **Forward Price-to-Earnings Ratio (PE Ratio)**: 42.73
222
+ - **Price-to-Book Ratio (PB Ratio)**: 9.04
223
+ - **Dividend Yield**: N/A
224
+ - **Trailing Earnings Per Share (EPS)**: $4.3
225
+ - **Beta Value of the Stock**: 2.42
226
+ - **52-Week High Price of the Stock**: $299.29
227
+ - **52-Week Low Price of the Stock**: $152.37
228
+
229
+ This information provides a snapshot of Tesla's financial position and performance based on the fundamental data obtained from the yfinance API. It shows that Tesla has a substantial market capitalization and a relatively high P/E and P/B ratio compared to other stocks in its industry. The company does not pay a dividend at the moment, which is reflected by a 'Dividend Yield' of 'None'. The Beta value indicates that Tesla's stock has a moderate level of volatility relative to the market. The 52-week high and low prices give an idea of the stock's range over the past year. This data can be useful when assessing investment opportunities and making investment decisions.<|im_end|>
230
+ ```
231
+
232
+
233
+ ## Prompt Format for JSON Mode / Structured Outputs
234
+
235
+ Our model was also trained on a specific system prompt for Structured Outputs, which should respond with **only** a json object response, in a specific json schema.
236
+
237
+ Your schema can be made from a pydantic object using our codebase, with the standalone script `jsonmode.py` available here: https://github.com/NousResearch/Hermes-Function-Calling/tree/main
238
+
239
+ ```
240
+ <|im_start|>system
241
+ You are a helpful assistant that answers in JSON. Here's the json schema you must adhere to:\n<schema>\n{schema}\n</schema><|im_end|>
242
+ ```
243
+
244
+ Given the {schema} that you provide, it should follow the format of that json to create it's response, all you have to do is give a typical user prompt, and it will respond in JSON.
245
+
246
+
247
+ # Inference
248
+
249
+ Here's an example of how to run inference with Hermes-3 3B using the HuggingFace Transformers library.
250
+
251
+ ```python
252
+ import torch
253
+ from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM
254
+ import bitsandbytes, flash_attn
255
+
256
+ tokenizer = AutoTokenizer.from_pretrained('NousResearch/Hermes-3-Llama-3.2-3B', trust_remote_code=True)
257
+ model = LlamaForCausalLM.from_pretrained(
258
+ "NousResearch/Hermes-3-Llama-3.2-3B",
259
+ torch_dtype=torch.float16,
260
+ device_map="auto",
261
+ load_in_8bit=False,
262
+ load_in_4bit=True,
263
+ use_flash_attention_2=True
264
+ )
265
+
266
+ prompts = [
267
+ """<|im_start|>system
268
+ You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|>
269
+ <|im_start|>user
270
+ Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|>
271
+ <|im_start|>assistant""",
272
+ ]
273
+
274
+ for chat in prompts:
275
+ print(chat)
276
+ input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
277
+ generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
278
+ response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
279
+ print(f"Response: {response}")
280
+ ```
281
+
282
+ Hermes-3 3B is also fully supported on [vLLM](https://github.com/vllm-project/vllm).
283
+
284
+ ```bash
285
+ vllm serve NousResearch/Hermes-3-Llama-3.2-3B
286
+ ```
287
+
288
+ ## Inference Code for Function Calling:
289
+
290
+ All code for utilizing, parsing, and building function calling templates is available on our github:
291
+ [https://github.com/NousResearch/Hermes-Function-Calling](https://github.com/NousResearch/Hermes-Function-Calling)
292
+
293
+
294
+ ## Quantized Versions:
295
+
296
+ GGUF Quants: https://huggingface.co/NousResearch/Hermes-3-Llama-3.2-3B-GGUF
297
+
298
+ # How to cite:
299
+
300
+ ```bibtext
301
+ @misc{teknium2024hermes3technicalreport,
302
+ title={Hermes 3 Technical Report},
303
+ author={Ryan Teknium and Jeffrey Quesnelle and Chen Guang},
304
+ year={2024},
305
+ eprint={2408.11857},
306
+ archivePrefix={arXiv},
307
+ primaryClass={cs.CL},
308
+ url={https://arxiv.org/abs/2408.11857},
309
+ }
310
+ ```
311
+
312
+