Update README.md (#34)
Browse files- Update README.md (b52ae94a65513191b373f1270cd50f428d883a62)
- Update README.md (2c69e4b0a46571172f86ef79bdd95357e326d26e)
Co-authored-by: Vaibhav Srivastav <reach-vb@users.noreply.huggingface.co>
README.md
CHANGED
@@ -43,13 +43,37 @@ state of the art AI models and helping foster innovation for everyone.
|
|
43 |
|
44 |
### Usage
|
45 |
|
46 |
-
Below we share some code snippets on how to get quickly started with running the model. First
|
|
|
|
|
|
|
47 |
|
|
|
48 |
|
49 |
-
#### Running the
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
```python
|
55 |
# pip install accelerate
|
@@ -60,13 +84,24 @@ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it")
|
|
60 |
model = AutoModelForCausalLM.from_pretrained(
|
61 |
"google/gemma-2-27b-it",
|
62 |
device_map="auto",
|
63 |
-
torch_dtype=torch.bfloat16
|
64 |
)
|
65 |
|
66 |
input_text = "Write me a poem about Machine Learning."
|
67 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
68 |
|
69 |
-
outputs = model.generate(**input_ids)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
print(tokenizer.decode(outputs[0]))
|
71 |
```
|
72 |
|
@@ -86,19 +121,32 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
86 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it")
|
87 |
model = AutoModelForCausalLM.from_pretrained(
|
88 |
"google/gemma-2-27b-it",
|
89 |
-
device_map="auto"
|
90 |
)
|
91 |
|
92 |
input_text = "Write me a poem about Machine Learning."
|
93 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
94 |
|
95 |
-
outputs = model.generate(**input_ids)
|
96 |
print(tokenizer.decode(outputs[0]))
|
97 |
```
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
#### Quantized Versions through `bitsandbytes`
|
100 |
|
101 |
-
|
|
|
|
|
|
|
102 |
|
103 |
```python
|
104 |
# pip install bitsandbytes accelerate
|
@@ -109,16 +157,21 @@ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
|
109 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it")
|
110 |
model = AutoModelForCausalLM.from_pretrained(
|
111 |
"google/gemma-2-27b-it",
|
112 |
-
quantization_config=quantization_config
|
|
|
113 |
|
114 |
input_text = "Write me a poem about Machine Learning."
|
115 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
116 |
|
117 |
-
outputs = model.generate(**input_ids)
|
118 |
print(tokenizer.decode(outputs[0]))
|
119 |
```
|
|
|
120 |
|
121 |
-
|
|
|
|
|
|
|
122 |
|
123 |
```python
|
124 |
# pip install bitsandbytes accelerate
|
@@ -129,33 +182,79 @@ quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
|
129 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it")
|
130 |
model = AutoModelForCausalLM.from_pretrained(
|
131 |
"google/gemma-2-27b-it",
|
132 |
-
quantization_config=quantization_config
|
|
|
133 |
|
134 |
input_text = "Write me a poem about Machine Learning."
|
135 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
136 |
|
137 |
-
outputs = model.generate(**input_ids)
|
138 |
print(tokenizer.decode(outputs[0]))
|
139 |
```
|
|
|
140 |
|
|
|
141 |
|
142 |
-
|
|
|
|
|
|
|
143 |
|
144 |
-
|
|
|
145 |
|
146 |
-
|
147 |
-
> Gemma 2 is currently incompatible with Flash Attention/ SDPA, using it might result in unreliable generations. Use at your own risk.
|
148 |
|
149 |
-
|
|
|
|
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
```
|
158 |
|
|
|
|
|
|
|
|
|
159 |
### Chat Template
|
160 |
|
161 |
The instruction-tuned models use a chat template that must be adhered to for conversational use.
|
|
|
43 |
|
44 |
### Usage
|
45 |
|
46 |
+
Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with:
|
47 |
+
```sh
|
48 |
+
pip install -U transformers
|
49 |
+
```
|
50 |
|
51 |
+
Then, copy the snippet from the section that is relevant for your usecase.
|
52 |
|
53 |
+
#### Running with the `pipeline` API
|
54 |
+
|
55 |
+
```python
|
56 |
+
import torch
|
57 |
+
from transformers import pipeline
|
58 |
|
59 |
+
pipe = pipeline(
|
60 |
+
"text-generation",
|
61 |
+
model="google/gemma-2-27b-it",
|
62 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
63 |
+
device="cuda", # replace with "mps" to run on a Mac device
|
64 |
+
)
|
65 |
+
|
66 |
+
messages = [
|
67 |
+
{"role": "user", "content": "Who are you? Please, answer in pirate-speak."},
|
68 |
+
]
|
69 |
+
|
70 |
+
outputs = pipe(messages, max_new_tokens=256)
|
71 |
+
assistant_response = outputs[0]["generated_text"][-1]["content"].strip()
|
72 |
+
print(assistant_response)
|
73 |
+
# Ahoy, matey! I be Gemma, a digital scallywag, a language-slingin' parrot of the digital seas. I be here to help ye with yer wordy woes, answer yer questions, and spin ye yarns of the digital world. So, what be yer pleasure, eh? 🦜
|
74 |
+
```
|
75 |
+
|
76 |
+
#### Running the model on a single / multi GPU
|
77 |
|
78 |
```python
|
79 |
# pip install accelerate
|
|
|
84 |
model = AutoModelForCausalLM.from_pretrained(
|
85 |
"google/gemma-2-27b-it",
|
86 |
device_map="auto",
|
87 |
+
torch_dtype=torch.bfloat16,
|
88 |
)
|
89 |
|
90 |
input_text = "Write me a poem about Machine Learning."
|
91 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
92 |
|
93 |
+
outputs = model.generate(**input_ids, max_new_tokens=32)
|
94 |
+
print(tokenizer.decode(outputs[0]))
|
95 |
+
```
|
96 |
+
|
97 |
+
You can ensure the correct chat template is applied by using `tokenizer.apply_chat_template` as follows:
|
98 |
+
```python
|
99 |
+
messages = [
|
100 |
+
{"role": "user", "content": "Write me a poem about Machine Learning."},
|
101 |
+
]
|
102 |
+
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True).to("cuda")
|
103 |
+
|
104 |
+
outputs = model.generate(**input_ids, max_new_tokens=256)
|
105 |
print(tokenizer.decode(outputs[0]))
|
106 |
```
|
107 |
|
|
|
121 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it")
|
122 |
model = AutoModelForCausalLM.from_pretrained(
|
123 |
"google/gemma-2-27b-it",
|
124 |
+
device_map="auto",
|
125 |
)
|
126 |
|
127 |
input_text = "Write me a poem about Machine Learning."
|
128 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
129 |
|
130 |
+
outputs = model.generate(**input_ids, max_new_tokens=32)
|
131 |
print(tokenizer.decode(outputs[0]))
|
132 |
```
|
133 |
|
134 |
+
#### Running the model through a CLI
|
135 |
+
|
136 |
+
The [local-gemma](https://github.com/huggingface/local-gemma) repository contains a lightweight wrapper around Transformers
|
137 |
+
for running Gemma 2 through a command line interface, or CLI. Follow the [installation instructions](https://github.com/huggingface/local-gemma#cli-usage)
|
138 |
+
for getting started, then launch the CLI through the following command:
|
139 |
+
|
140 |
+
```shell
|
141 |
+
local-gemma --model 27b --preset speed
|
142 |
+
```
|
143 |
+
|
144 |
#### Quantized Versions through `bitsandbytes`
|
145 |
|
146 |
+
<details>
|
147 |
+
<summary>
|
148 |
+
Using 8-bit precision (int8)
|
149 |
+
</summary>
|
150 |
|
151 |
```python
|
152 |
# pip install bitsandbytes accelerate
|
|
|
157 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it")
|
158 |
model = AutoModelForCausalLM.from_pretrained(
|
159 |
"google/gemma-2-27b-it",
|
160 |
+
quantization_config=quantization_config,
|
161 |
+
)
|
162 |
|
163 |
input_text = "Write me a poem about Machine Learning."
|
164 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
165 |
|
166 |
+
outputs = model.generate(**input_ids, max_new_tokens=32)
|
167 |
print(tokenizer.decode(outputs[0]))
|
168 |
```
|
169 |
+
</details>
|
170 |
|
171 |
+
<details>
|
172 |
+
<summary>
|
173 |
+
Using 4-bit precision
|
174 |
+
</summary>
|
175 |
|
176 |
```python
|
177 |
# pip install bitsandbytes accelerate
|
|
|
182 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it")
|
183 |
model = AutoModelForCausalLM.from_pretrained(
|
184 |
"google/gemma-2-27b-it",
|
185 |
+
quantization_config=quantization_config,
|
186 |
+
)
|
187 |
|
188 |
input_text = "Write me a poem about Machine Learning."
|
189 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
190 |
|
191 |
+
outputs = model.generate(**input_ids, max_new_tokens=32)
|
192 |
print(tokenizer.decode(outputs[0]))
|
193 |
```
|
194 |
+
</details>
|
195 |
|
196 |
+
#### Advanced Usage
|
197 |
|
198 |
+
<details>
|
199 |
+
<summary>
|
200 |
+
Torch compile
|
201 |
+
</summary>
|
202 |
|
203 |
+
[Torch compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) is a method for speeding-up the
|
204 |
+
inference of PyTorch modules. The Gemma-2 model can be run up to 6x faster by leveraging torch compile.
|
205 |
|
206 |
+
Note that two warm-up steps are required before the full inference speed is realised:
|
|
|
207 |
|
208 |
+
```python
|
209 |
+
import os
|
210 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
211 |
|
212 |
+
from transformers import AutoTokenizer, Gemma2ForCausalLM
|
213 |
+
from transformers.cache_utils import HybridCache
|
214 |
+
import torch
|
215 |
+
|
216 |
+
torch.set_float32_matmul_precision("high")
|
217 |
+
|
218 |
+
# load the model + tokenizer
|
219 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it")
|
220 |
+
model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-27b-it", torch_dtype=torch.bfloat16)
|
221 |
+
model.to("cuda")
|
222 |
+
|
223 |
+
# apply the torch compile transformation
|
224 |
+
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
|
225 |
+
|
226 |
+
# pre-process inputs
|
227 |
+
input_text = "The theory of special relativity states "
|
228 |
+
model_inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
|
229 |
+
prompt_length = model_inputs.input_ids.shape[1]
|
230 |
+
|
231 |
+
# set-up k/v cache
|
232 |
+
past_key_values = HybridCache(
|
233 |
+
config=model.config,
|
234 |
+
max_batch_size=1,
|
235 |
+
max_cache_len=model.config.max_position_embeddings,
|
236 |
+
device=model.device,
|
237 |
+
dtype=model.dtype
|
238 |
+
)
|
239 |
+
|
240 |
+
# enable passing kv cache to generate
|
241 |
+
model._supports_cache_class = True
|
242 |
+
model.generation_config.cache_implementation = None
|
243 |
+
|
244 |
+
# two warm-up steps
|
245 |
+
for idx in range(2):
|
246 |
+
outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
|
247 |
+
past_key_values.reset()
|
248 |
+
|
249 |
+
# fast run
|
250 |
+
outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
|
251 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
252 |
```
|
253 |
|
254 |
+
For more details, refer to the [Transformers documentation](https://huggingface.co/docs/transformers/main/en/llm_optims?static-kv=basic+usage%3A+generation_config).
|
255 |
+
|
256 |
+
</details>
|
257 |
+
|
258 |
### Chat Template
|
259 |
|
260 |
The instruction-tuned models use a chat template that must be adhered to for conversational use.
|