File size: 5,328 Bytes
02d731b fa02e86 f2ecf3b fa02e86 02d731b 163a51e 02d731b d0dcf39 02d731b d0dcf39 02d731b d0dcf39 02d731b f2ecf3b 02d731b aa1299e 02d731b aa1299e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
---
language:
- en
license: llama3.2
tags:
- text-generation-inference
- transformers
- llama
- trl
- sft
- reasoning
- llama-3
base_model: chuanli11/Llama-3.2-3B-Instruct-uncensored
datasets:
- KingNish/reasoning-base-20k
- lunahr/thea-name-overrides
model-index:
- name: thea-3b-25r
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 73.44
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-3b-25r
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 22.55
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-3b-25r
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 16.31
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-3b-25r
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2.35
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-3b-25r
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.57
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-3b-25r
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 24.25
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-3b-25r
name: Open LLM Leaderboard
---
# UPDATE AVAILABLE
A newer version is available. It is based on a better foundational model and it may provide higher benchmarking scores.
Check it out: https://huggingface.co/lunahr/thea-v2-3b-50r
# Model Description
An uncensored reasoning Llama 3.2 3B model trained on reasoning data.
It has been trained using improved training code, and gives an improved performance.
Here is what inference code you should use:
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
MAX_REASONING_TOKENS = 1024
MAX_RESPONSE_TOKENS = 512
model_name = "piotr25691/thea-3b-25r"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Which is greater 9.9 or 9.11 ??"
messages = [
{"role": "user", "content": prompt}
]
# Generate reasoning
reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True)
reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device)
reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS)
reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("REASONING: " + reasoning_output)
# Generate answer
messages.append({"role": "reasoning", "content": reasoning_output})
response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device)
response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS)
response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("ANSWER: " + response_output)
```
- **Trained by:** [Piotr Zalewski](https://huggingface.co/lunahr)
- **License:** llama3.2
- **Finetuned from model:** [chuanli11/Llama-3.2-3B-Instruct-uncensored](https://huggingface.co/chuanli11/Llama-3.2-3B-Instruct-uncensored)
- **Dataset used:** [KingNish/reasoning-base-20k](https://huggingface.co/datasets/KingNish/reasoning-base-20k)
This Llama model was trained faster than [Unsloth](https://github.com/unslothai/unsloth) using [custom training code](https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4).
Visit https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4 to find out how you can finetune your models using BOTH of the Kaggle provided GPUs.
|