File size: 5,300 Bytes
02d731b
 
 
 
 
 
 
 
 
 
 
 
fa02e86
 
 
f2ecf3b
fa02e86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37345f8
fa02e86
 
 
 
 
 
 
 
 
 
 
 
 
 
37345f8
fa02e86
 
 
 
 
 
 
 
 
 
 
 
 
 
37345f8
fa02e86
 
 
 
 
 
 
 
 
 
 
 
 
 
37345f8
fa02e86
 
 
 
 
 
 
 
 
 
 
 
 
 
37345f8
fa02e86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37345f8
fa02e86
02d731b
 
163a51e
 
 
 
 
02d731b
 
d0dcf39
02d731b
d0dcf39
02d731b
 
 
 
 
 
 
37345f8
02d731b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0dcf39
02d731b
 
 
 
 
 
 
 
 
 
 
f2ecf3b
02d731b
 
 
 
aa1299e
02d731b
aa1299e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
language:
- en
license: llama3.2
tags:
- text-generation-inference
- transformers
- llama
- trl
- sft
- reasoning
- llama-3
base_model: chuanli11/Llama-3.2-3B-Instruct-uncensored
datasets:
- KingNish/reasoning-base-20k
- lunahr/thea-name-overrides
model-index:
- name: thea-3b-25r
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 73.44
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lunahr/thea-3b-25r
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 22.55
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lunahr/thea-3b-25r
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 16.31
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lunahr/thea-3b-25r
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 2.35
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lunahr/thea-3b-25r
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 3.57
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lunahr/thea-3b-25r
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 24.25
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lunahr/thea-3b-25r
      name: Open LLM Leaderboard
---

# UPDATE AVAILABLE
A newer version is available. It is based on a better foundational model and it may provide higher benchmarking scores.

Check it out: https://huggingface.co/lunahr/thea-v2-3b-50r

# Model Description

An uncensored reasoning Llama 3.2 3B model trained on reasoning data.

It has been trained using improved training code, and gives an improved performance.
Here is what inference code you should use:
```py
from transformers import AutoModelForCausalLM, AutoTokenizer

MAX_REASONING_TOKENS = 1024
MAX_RESPONSE_TOKENS = 512

model_name = "lunahr/thea-3b-25r"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Which is greater 9.9 or 9.11 ??"
messages = [
    {"role": "user", "content": prompt}
]

# Generate reasoning
reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True)
reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device)
reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS)
reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)

print("REASONING: " + reasoning_output)

# Generate answer
messages.append({"role": "reasoning", "content": reasoning_output})
response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device)
response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS)
response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True)

print("ANSWER: " + response_output)
```

- **Trained by:** [Piotr Zalewski](https://huggingface.co/lunahr)
- **License:** llama3.2
- **Finetuned from model:** [chuanli11/Llama-3.2-3B-Instruct-uncensored](https://huggingface.co/chuanli11/Llama-3.2-3B-Instruct-uncensored)
- **Dataset used:** [KingNish/reasoning-base-20k](https://huggingface.co/datasets/KingNish/reasoning-base-20k)

This Llama model was trained faster than [Unsloth](https://github.com/unslothai/unsloth) using [custom training code](https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4).

Visit https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4 to find out how you can finetune your models using BOTH of the Kaggle provided GPUs.