lunared473 commited on
Commit
819cc5b
·
1 Parent(s): 5886efa

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1617.55 +/- 276.20
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51e6046161d531c573b7b018d132b400838ebf6c7539c45ee0704988eed3f027
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc40d39daf0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc40d39db80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc40d39dc10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc40d39dca0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc40d39dd30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc40d39ddc0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc40d39de50>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc40d39dee0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc40d39df70>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc40d3a0040>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc40d3a00d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc40d3a0160>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fc40d395ed0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1675532130562115522,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAANdOj5KloG+ZdfmPrlkHL7+1g2/2QpXP4NVDD+orUG/u/cpP+rAj7wXpyC/HsyJv4s0V75mL2M/Dez2vWxqMT89b48/FivMP0JqFz9hVDW+SaQrvyJTtT3r/4s+ps6wPlzDfb+2eP0+YbjRvyKlgj/Oui0/Td63P5FVlb2N3sM/os9CQIuoTj48700/8Okav6UHCT/rcbC/l+eOvx2vej9YiNo/ANqavSeCSj7gAyBAeGSoPzgmfb5hr3M+TwiWvlLp0T6GGlnA8405P94tn75cw32/tnj9PmG40b8ipYI/6M5PPYhdoD+wjsc952qbP0/qkD8HWrq/ZVlbvv3LVL9zrbw91UyIv2JCoT6Zebg/HvZQP3rdj76swmE/c6WPu3vqXD9iRpu/fG9pPjuxXL+yC/++9G5KP6KbzT40ENK/XMN9v7Z4/T5huNG/J9F6vygexT4/dRE/AP3uPvOuMD9pAaG/jvRrPzo48D0C5om/V/pQPxvUNbxqzZE/G/NBvxrc6r4gn9c+kpu3PcOoOj5+Iu++OmyUPmVENz99U4u/tdJjPT/3XD9mIfq+tLDoP9gggT+2eP0+Cj8cPyfRer+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABetxa1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfswQPgAAAAAvSADAAAAAAN+/lDoAAAAAhs3gPwAAAAAaZ4U9AAAAAGKk3D8AAAAAFWA6vQAAAABVN+K/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAysX2NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNG0ir0AAAAAAZPzvwAAAACEyHW7AAAAANHt/z8AAAAANtD2PQAAAABFWu8/AAAAAAyZEL4AAAAAYl7jvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABC687UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBI17q9AAAAAAec8L8AAAAAJGMNvgAAAACeodw/AAAAACSkkLwAAAAAdJbjPwAAAAAajsM8AAAAANvP6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/8M62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAo3UNPgAAAADx3OG/AAAAACP5A74AAAAArZP5PwAAAABsh5q9AAAAAA4WAEAAAAAAE+aLvQAAAAAoR++/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ8xmVZ9uxeMAWyUTegDjAF0lEdAq9PB77bcoHV9lChoBkdAn4Cl/+bVjWgHTegDaAhHQKvXMnTiKix1fZQoaAZHQJ++sdBBzFNoB03oA2gIR0Cr3X/wI+nqdX2UKGgGR0CgJ954wAU+aAdN6ANoCEdAq+HXfGdZq3V9lChoBkdAnDFMzVMEimgHTegDaAhHQKvi6bjtG/h1fZQoaAZHQKD3810knkVoB03oA2gIR0Cr5S8PnSv1dX2UKGgGR0CeMp4agmJFaAdN6ANoCEdAq+ojc2zfJnV9lChoBkdAl56pi3G4qmgHTegDaAhHQKvuY7GNrCZ1fZQoaAZHQJj3GPq9oOBoB03oA2gIR0Cr75rq2SdOdX2UKGgGR0CgTLeiBXjmaAdN6ANoCEdAq/LQ4wRGt3V9lChoBkdAnWUMgU1yemgHTegDaAhHQKv6KsoUi6h1fZQoaAZHQJ3Y6ZG8VYZoB03oA2gIR0Cr/mXDej20dX2UKGgGR0Ce3sRJmNBGaAdN6ANoCEdAq/9n3L3bmHV9lChoBkdAnsp7FjurqGgHTegDaAhHQKwBs23rleZ1fZQoaAZHQJ1+4R+SbH9oB03oA2gIR0CsBqJxvNu+dX2UKGgGR0Cbm08wpON6aAdN6ANoCEdArAsLVlPJrHV9lChoBkdAocR07GNrCWgHTegDaAhHQKwMGcNpdrx1fZQoaAZHQJ9KYbVBlc1oB03oA2gIR0CsDpQ6ySmqdX2UKGgGR0Cewygg5imVaAdN6ANoCEdArBXavzOHFnV9lChoBkdAmWRslPacqmgHTegDaAhHQKwbAcdYGMZ1fZQoaAZHQJBTuafBeoloB03oA2gIR0CsHAjWkJrtdX2UKGgGR0CYj1CE6DGtaAdN6ANoCEdArB5S/qPfbnV9lChoBkdAmg8QIppeu2gHTegDaAhHQKwjUtFKCg91fZQoaAZHQImtzcTJyQxoB03oA2gIR0CsJ68+iaiLdX2UKGgGR0CYZNgQHzH0aAdN6ANoCEdArCi9/SYw7HV9lChoBkdAliopTyauwGgHTegDaAhHQKwrBkFOful1fZQoaAZHQKBL4FuejEhoB03oA2gIR0CsMbDuKGcndX2UKGgGR0CbNefcer+6aAdN6ANoCEdArDgHPszEaXV9lChoBkdAnhw51RtP6GgHTegDaAhHQKw5GeIVM251fZQoaAZHQJKdsI2OyVxoB03oA2gIR0CsO2Fj/dZadX2UKGgGR0CcusT/hl19aAdN6ANoCEdArEBLwWnCO3V9lChoBkdAngEJMYdhiWgHTegDaAhHQKxEt4N7SiN1fZQoaAZHQJonRmOEM9doB03oA2gIR0CsRckIX0oSdX2UKGgGR0B28DPGACnxaAdN6ANoCEdArEgE4BFNL3V9lChoBkdAnwfcO09hZ2gHTegDaAhHQKxNn1jAi3Z1fZQoaAZHQKBQ4+h4+r5oB03oA2gIR0CsU/q3/givdX2UKGgGR0Caxzp5NXYEaAdN6ANoCEdArFWVEsrd33V9lChoBkdAnB4iGvfTC2gHTegDaAhHQKxYDsC1Z1V1fZQoaAZHQJw+MnhKlHloB03oA2gIR0CsXNkhzNlidX2UKGgGR0CWBDwIMSbpaAdN6ANoCEdArGECUkfLcXV9lChoBkdAl44KK+BYm2gHTegDaAhHQKxiAubqhUR1fZQoaAZHQJ3Q9chTwUhoB03oA2gIR0CsZE2pAD7qdX2UKGgGR0CeOYdZJTVEaAdN6ANoCEdArGkqgK4QSXV9lChoBkdAlr91wPy08mgHTegDaAhHQKxu2xSpBHF1fZQoaAZHQJychrYXfqJoB03oA2gIR0CscG5o4+8odX2UKGgGR0CNrUksz2vjaAdN6ANoCEdArHPo6nzg/HV9lChoBkdAm1TTi83+/GgHTegDaAhHQKx5AMc6vJR1fZQoaAZHQJCET5GjKxNoB03oA2gIR0CsfS4pc5bRdX2UKGgGR0CQ1GLlV94NaAdN6ANoCEdArH47PY4ACHV9lChoBkdAl9kpaV2RrGgHTegDaAhHQKyAjJ17pmp1fZQoaAZHQJIHS2jO9nNoB03oA2gIR0Csh428Zk08dX2UKGgGR0CYOlLmITGpaAdN6ANoCEdArI7QYrJ8v3V9lChoBkdAk5wShFmWdGgHTegDaAhHQKyQaHzpX6t1fZQoaAZHQJcIzxI8QqZoB03oA2gIR0Csk91mrbQDdX2UKGgGR0CauWRLbpNcaAdN6ANoCEdArJlJNEgGKXV9lChoBkdAk7jYH9m6G2gHTegDaAhHQKydff8/D+B1fZQoaAZHQJcYouYhMaloB03oA2gIR0CsnoQosqaxdX2UKGgGR0CX2Job4rSWaAdN6ANoCEdArKC0yDZlF3V9lChoBkdAkhJ0voNd7mgHTegDaAhHQKylnTdcjaB1fZQoaAZHQJkvNyU9pypoB03oA2gIR0CsqhktVaOhdX2UKGgGR0Ca8DcI7eVLaAdN6ANoCEdArKuKH9FWn3V9lChoBkdAmJCogJTl1mgHTegDaAhHQKyuy5IYm9h1fZQoaAZHQJbjB0nw5NpoB03oA2gIR0CstY8SXdCWdX2UKGgGR0CXu05nDiwTaAdN6ANoCEdArLnFuWKMvXV9lChoBkdAluTv0Zm7KGgHTegDaAhHQKy61sqJ/G51fZQoaAZHQJk5ZaB7NStoB03oA2gIR0CsvR0xVQyidX2UKGgGR0B6wlsfq5byaAdNNAFoCEdArMDqB3A2ynV9lChoBkdAnuyU6o2n9GgHTegDaAhHQKzB/ix3V091fZQoaAZHQJQMFCw8nu1oB03oA2gIR0Csxj39BKL9dX2UKGgGR0Ccd/OTaCcxaAdN6ANoCEdArMdHRb8m8nV9lChoBkdAnLWaLCN0eWgHTegDaAhHQKzP5DQZ4wB1fZQoaAZHQJp9QcdYGMZoB03oA2gIR0Cs0ZUXP7emdX2UKGgGR0CdOzkdV/+baAdN6ANoCEdArNYNK7I1cnV9lChoBkdAnKJufAbhnGgHTegDaAhHQKzXFaRp1zR1fZQoaAZHQJuWOsNlRP5oB03oA2gIR0Cs3SKzzErHdX2UKGgGR0Ce5zM0gr6MaAdN6ANoCEdArN4qMo+fRXV9lChoBkdAmfqLAYYR/WgHTegDaAhHQKziOsmv4dp1fZQoaAZHQJ9aOR7qptJoB03oA2gIR0Cs405sCT2WdX2UKGgGR0CR7TFVDKHPaAdN6ANoCEdArOprXL/0d3V9lChoBkdAmW2xu89Oh2gHTegDaAhHQKzsCNwR5C51fZQoaAZHQJwWx3s5XEJoB03oA2gIR0Cs8hPrWy1NdX2UKGgGR0Cg4/ZpJwsHaAdN6ANoCEdArPMU3XI2fnV9lChoBkdAmoNHJgb6xmgHTegDaAhHQKz5RWp6yB11fZQoaAZHQJFQoxgy/K1oB03oA2gIR0Cs+lmwzLwGdX2UKGgGR0CfPWOafBepaAdN6ANoCEdArP6CiwjdHnV9lChoBkdAnP8LPY4ACGgHTegDaAhHQKz/huNPxhF1fZQoaAZHQJgNnU+cH4ZoB03oA2gIR0CtBaLFn7HidX2UKGgGR0CcwCdBSk0raAdN6ANoCEdArQc9f/m1Y3V9lChoBkdAmlkZn+Q2dmgHTegDaAhHQK0NY75Ec811fZQoaAZHQJPat8CxNZhoB03oA2gIR0CtDu9n9NvgdX2UKGgGR0CfbUdNFjNIaAdN6ANoCEdArRUqL/CIlHV9lChoBkdAnqo7wKBuoGgHTegDaAhHQK0WNOu7pV11fZQoaAZHQJ49xuEVWS5oB03oA2gIR0CtGkLwe/5+dX2UKGgGR0CdpaJHiFTOaAdN6ANoCEdArRtKXQdCFHV9lChoBkdAlI1YYrJ8v2gHTegDaAhHQK0hUDlo11p1fZQoaAZHQJrzfGOuJUJoB03oA2gIR0CtIlsOf/WEdX2UKGgGR0CdPC8hLXcyaAdN6ANoCEdArSe3qgRK6HV9lChoBkdAjMaAxrSE12gHTegDaAhHQK0pTwEyLyd1fZQoaAZHQJpAxZlnRLNoB03oA2gIR0CtMTI3aSLZdX2UKGgGR0CZUJycTakAaAdN6ANoCEdArTJGnhsImnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6fdd3ed33660968ad57b66fa7b63022d9a8ee6616d71821469cc2440c188250
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b67bddfacb48c6f4f262ee46c51e625170689fc36cde63c4cd4381d481fc0e45
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc40d39daf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc40d39db80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc40d39dc10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc40d39dca0>", "_build": "<function ActorCriticPolicy._build at 0x7fc40d39dd30>", "forward": "<function ActorCriticPolicy.forward at 0x7fc40d39ddc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc40d39de50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc40d39dee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc40d39df70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc40d3a0040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc40d3a00d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc40d3a0160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc40d395ed0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675532130562115522, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAANdOj5KloG+ZdfmPrlkHL7+1g2/2QpXP4NVDD+orUG/u/cpP+rAj7wXpyC/HsyJv4s0V75mL2M/Dez2vWxqMT89b48/FivMP0JqFz9hVDW+SaQrvyJTtT3r/4s+ps6wPlzDfb+2eP0+YbjRvyKlgj/Oui0/Td63P5FVlb2N3sM/os9CQIuoTj48700/8Okav6UHCT/rcbC/l+eOvx2vej9YiNo/ANqavSeCSj7gAyBAeGSoPzgmfb5hr3M+TwiWvlLp0T6GGlnA8405P94tn75cw32/tnj9PmG40b8ipYI/6M5PPYhdoD+wjsc952qbP0/qkD8HWrq/ZVlbvv3LVL9zrbw91UyIv2JCoT6Zebg/HvZQP3rdj76swmE/c6WPu3vqXD9iRpu/fG9pPjuxXL+yC/++9G5KP6KbzT40ENK/XMN9v7Z4/T5huNG/J9F6vygexT4/dRE/AP3uPvOuMD9pAaG/jvRrPzo48D0C5om/V/pQPxvUNbxqzZE/G/NBvxrc6r4gn9c+kpu3PcOoOj5+Iu++OmyUPmVENz99U4u/tdJjPT/3XD9mIfq+tLDoP9gggT+2eP0+Cj8cPyfRer+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABetxa1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfswQPgAAAAAvSADAAAAAAN+/lDoAAAAAhs3gPwAAAAAaZ4U9AAAAAGKk3D8AAAAAFWA6vQAAAABVN+K/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAysX2NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNG0ir0AAAAAAZPzvwAAAACEyHW7AAAAANHt/z8AAAAANtD2PQAAAABFWu8/AAAAAAyZEL4AAAAAYl7jvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABC687UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBI17q9AAAAAAec8L8AAAAAJGMNvgAAAACeodw/AAAAACSkkLwAAAAAdJbjPwAAAAAajsM8AAAAANvP6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/8M62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAo3UNPgAAAADx3OG/AAAAACP5A74AAAAArZP5PwAAAABsh5q9AAAAAA4WAEAAAAAAE+aLvQAAAAAoR++/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ8xmVZ9uxeMAWyUTegDjAF0lEdAq9PB77bcoHV9lChoBkdAn4Cl/+bVjWgHTegDaAhHQKvXMnTiKix1fZQoaAZHQJ++sdBBzFNoB03oA2gIR0Cr3X/wI+nqdX2UKGgGR0CgJ954wAU+aAdN6ANoCEdAq+HXfGdZq3V9lChoBkdAnDFMzVMEimgHTegDaAhHQKvi6bjtG/h1fZQoaAZHQKD3810knkVoB03oA2gIR0Cr5S8PnSv1dX2UKGgGR0CeMp4agmJFaAdN6ANoCEdAq+ojc2zfJnV9lChoBkdAl56pi3G4qmgHTegDaAhHQKvuY7GNrCZ1fZQoaAZHQJj3GPq9oOBoB03oA2gIR0Cr75rq2SdOdX2UKGgGR0CgTLeiBXjmaAdN6ANoCEdAq/LQ4wRGt3V9lChoBkdAnWUMgU1yemgHTegDaAhHQKv6KsoUi6h1fZQoaAZHQJ3Y6ZG8VYZoB03oA2gIR0Cr/mXDej20dX2UKGgGR0Ce3sRJmNBGaAdN6ANoCEdAq/9n3L3bmHV9lChoBkdAnsp7FjurqGgHTegDaAhHQKwBs23rleZ1fZQoaAZHQJ1+4R+SbH9oB03oA2gIR0CsBqJxvNu+dX2UKGgGR0Cbm08wpON6aAdN6ANoCEdArAsLVlPJrHV9lChoBkdAocR07GNrCWgHTegDaAhHQKwMGcNpdrx1fZQoaAZHQJ9KYbVBlc1oB03oA2gIR0CsDpQ6ySmqdX2UKGgGR0Cewygg5imVaAdN6ANoCEdArBXavzOHFnV9lChoBkdAmWRslPacqmgHTegDaAhHQKwbAcdYGMZ1fZQoaAZHQJBTuafBeoloB03oA2gIR0CsHAjWkJrtdX2UKGgGR0CYj1CE6DGtaAdN6ANoCEdArB5S/qPfbnV9lChoBkdAmg8QIppeu2gHTegDaAhHQKwjUtFKCg91fZQoaAZHQImtzcTJyQxoB03oA2gIR0CsJ68+iaiLdX2UKGgGR0CYZNgQHzH0aAdN6ANoCEdArCi9/SYw7HV9lChoBkdAliopTyauwGgHTegDaAhHQKwrBkFOful1fZQoaAZHQKBL4FuejEhoB03oA2gIR0CsMbDuKGcndX2UKGgGR0CbNefcer+6aAdN6ANoCEdArDgHPszEaXV9lChoBkdAnhw51RtP6GgHTegDaAhHQKw5GeIVM251fZQoaAZHQJKdsI2OyVxoB03oA2gIR0CsO2Fj/dZadX2UKGgGR0CcusT/hl19aAdN6ANoCEdArEBLwWnCO3V9lChoBkdAngEJMYdhiWgHTegDaAhHQKxEt4N7SiN1fZQoaAZHQJonRmOEM9doB03oA2gIR0CsRckIX0oSdX2UKGgGR0B28DPGACnxaAdN6ANoCEdArEgE4BFNL3V9lChoBkdAnwfcO09hZ2gHTegDaAhHQKxNn1jAi3Z1fZQoaAZHQKBQ4+h4+r5oB03oA2gIR0CsU/q3/givdX2UKGgGR0Caxzp5NXYEaAdN6ANoCEdArFWVEsrd33V9lChoBkdAnB4iGvfTC2gHTegDaAhHQKxYDsC1Z1V1fZQoaAZHQJw+MnhKlHloB03oA2gIR0CsXNkhzNlidX2UKGgGR0CWBDwIMSbpaAdN6ANoCEdArGECUkfLcXV9lChoBkdAl44KK+BYm2gHTegDaAhHQKxiAubqhUR1fZQoaAZHQJ3Q9chTwUhoB03oA2gIR0CsZE2pAD7qdX2UKGgGR0CeOYdZJTVEaAdN6ANoCEdArGkqgK4QSXV9lChoBkdAlr91wPy08mgHTegDaAhHQKxu2xSpBHF1fZQoaAZHQJychrYXfqJoB03oA2gIR0CscG5o4+8odX2UKGgGR0CNrUksz2vjaAdN6ANoCEdArHPo6nzg/HV9lChoBkdAm1TTi83+/GgHTegDaAhHQKx5AMc6vJR1fZQoaAZHQJCET5GjKxNoB03oA2gIR0CsfS4pc5bRdX2UKGgGR0CQ1GLlV94NaAdN6ANoCEdArH47PY4ACHV9lChoBkdAl9kpaV2RrGgHTegDaAhHQKyAjJ17pmp1fZQoaAZHQJIHS2jO9nNoB03oA2gIR0Csh428Zk08dX2UKGgGR0CYOlLmITGpaAdN6ANoCEdArI7QYrJ8v3V9lChoBkdAk5wShFmWdGgHTegDaAhHQKyQaHzpX6t1fZQoaAZHQJcIzxI8QqZoB03oA2gIR0Csk91mrbQDdX2UKGgGR0CauWRLbpNcaAdN6ANoCEdArJlJNEgGKXV9lChoBkdAk7jYH9m6G2gHTegDaAhHQKydff8/D+B1fZQoaAZHQJcYouYhMaloB03oA2gIR0CsnoQosqaxdX2UKGgGR0CX2Job4rSWaAdN6ANoCEdArKC0yDZlF3V9lChoBkdAkhJ0voNd7mgHTegDaAhHQKylnTdcjaB1fZQoaAZHQJkvNyU9pypoB03oA2gIR0CsqhktVaOhdX2UKGgGR0Ca8DcI7eVLaAdN6ANoCEdArKuKH9FWn3V9lChoBkdAmJCogJTl1mgHTegDaAhHQKyuy5IYm9h1fZQoaAZHQJbjB0nw5NpoB03oA2gIR0CstY8SXdCWdX2UKGgGR0CXu05nDiwTaAdN6ANoCEdArLnFuWKMvXV9lChoBkdAluTv0Zm7KGgHTegDaAhHQKy61sqJ/G51fZQoaAZHQJk5ZaB7NStoB03oA2gIR0CsvR0xVQyidX2UKGgGR0B6wlsfq5byaAdNNAFoCEdArMDqB3A2ynV9lChoBkdAnuyU6o2n9GgHTegDaAhHQKzB/ix3V091fZQoaAZHQJQMFCw8nu1oB03oA2gIR0Csxj39BKL9dX2UKGgGR0Ccd/OTaCcxaAdN6ANoCEdArMdHRb8m8nV9lChoBkdAnLWaLCN0eWgHTegDaAhHQKzP5DQZ4wB1fZQoaAZHQJp9QcdYGMZoB03oA2gIR0Cs0ZUXP7emdX2UKGgGR0CdOzkdV/+baAdN6ANoCEdArNYNK7I1cnV9lChoBkdAnKJufAbhnGgHTegDaAhHQKzXFaRp1zR1fZQoaAZHQJuWOsNlRP5oB03oA2gIR0Cs3SKzzErHdX2UKGgGR0Ce5zM0gr6MaAdN6ANoCEdArN4qMo+fRXV9lChoBkdAmfqLAYYR/WgHTegDaAhHQKziOsmv4dp1fZQoaAZHQJ9aOR7qptJoB03oA2gIR0Cs405sCT2WdX2UKGgGR0CR7TFVDKHPaAdN6ANoCEdArOprXL/0d3V9lChoBkdAmW2xu89Oh2gHTegDaAhHQKzsCNwR5C51fZQoaAZHQJwWx3s5XEJoB03oA2gIR0Cs8hPrWy1NdX2UKGgGR0Cg4/ZpJwsHaAdN6ANoCEdArPMU3XI2fnV9lChoBkdAmoNHJgb6xmgHTegDaAhHQKz5RWp6yB11fZQoaAZHQJFQoxgy/K1oB03oA2gIR0Cs+lmwzLwGdX2UKGgGR0CfPWOafBepaAdN6ANoCEdArP6CiwjdHnV9lChoBkdAnP8LPY4ACGgHTegDaAhHQKz/huNPxhF1fZQoaAZHQJgNnU+cH4ZoB03oA2gIR0CtBaLFn7HidX2UKGgGR0CcwCdBSk0raAdN6ANoCEdArQc9f/m1Y3V9lChoBkdAmlkZn+Q2dmgHTegDaAhHQK0NY75Ec811fZQoaAZHQJPat8CxNZhoB03oA2gIR0CtDu9n9NvgdX2UKGgGR0CfbUdNFjNIaAdN6ANoCEdArRUqL/CIlHV9lChoBkdAnqo7wKBuoGgHTegDaAhHQK0WNOu7pV11fZQoaAZHQJ49xuEVWS5oB03oA2gIR0CtGkLwe/5+dX2UKGgGR0CdpaJHiFTOaAdN6ANoCEdArRtKXQdCFHV9lChoBkdAlI1YYrJ8v2gHTegDaAhHQK0hUDlo11p1fZQoaAZHQJrzfGOuJUJoB03oA2gIR0CtIlsOf/WEdX2UKGgGR0CdPC8hLXcyaAdN6ANoCEdArSe3qgRK6HV9lChoBkdAjMaAxrSE12gHTegDaAhHQK0pTwEyLyd1fZQoaAZHQJpAxZlnRLNoB03oA2gIR0CtMTI3aSLZdX2UKGgGR0CZUJycTakAaAdN6ANoCEdArTJGnhsImnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7a57bbcb63018548960eed2ddb074c77c6f5844886704343e5b3df68bc9326c
3
+ size 1084767
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1617.5457196116913, "std_reward": 276.20402834847033, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-04T18:40:55.453115"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c50941e1de2417fe1cea9b590f569c2f3c96a12ded36793c0b673e1189899d8
3
+ size 2136