|
from typing import Dict, List, Any |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
from peft import PeftModel, PeftConfig |
|
import torch |
|
import time |
|
|
|
class EndpointHandler: |
|
def __init__(self, path="luxmorocco/qiyas-falcon-7b"): |
|
|
|
config = PeftConfig.from_pretrained(path) |
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.float16, |
|
) |
|
|
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
config.base_model_name_or_path, |
|
return_dict=True, |
|
load_in_4bit=True, |
|
device_map={"":0}, |
|
trust_remote_code=True, |
|
quantization_config=bnb_config, |
|
) |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
|
|
self.model = PeftModel.from_pretrained(self.model, path) |
|
|
|
def __call__(self, data: Any) -> Dict[str, Any]: |
|
""" |
|
Args: |
|
inputs :obj:`list`:. The object should be like {"context": "some word", "question": "some word"} containing: |
|
- "context": |
|
- "question": |
|
Return: |
|
A :obj:`list`:. The object returned should be like {"answer": "some word", time: "..."} containing: |
|
- "answer": answer the question based on the context |
|
- "time": the time run predict |
|
""" |
|
inputs = data.pop("inputs", data) |
|
context = inputs.pop("context", inputs) |
|
question = inputs.pop("question", inputs) |
|
|
|
prompt = f"""Answer the question based on the context below. If the question cannot be answered using the information provided answer with 'No answer'. Stop response if end. |
|
>>TITLE<<: Flawless answer. |
|
>>CONTEXT<<: {context} |
|
>>QUESTION<<: {question} |
|
>>ANSWER<<: |
|
""".strip() |
|
|
|
batch = self.tokenizer( |
|
prompt, |
|
padding=True, |
|
truncation=True, |
|
return_tensors='pt' |
|
) |
|
batch = batch.to('cuda:0') |
|
|
|
generation_config = self.model.generation_config |
|
generation_config.top_p = 0.7 |
|
generation_config.temperature = 0.7 |
|
generation_config.max_new_tokens = 256 |
|
generation_config.num_return_sequences = 1 |
|
generation_config.pad_token_id = self.tokenizer.eos_token_id |
|
generation_config.eos_token_id = self.tokenizer.eos_token_id |
|
|
|
start = time.time() |
|
with torch.cuda.amp.autocast(): |
|
output_tokens = self.model.generate( |
|
input_ids = batch.input_ids, |
|
generation_config=generation_config, |
|
) |
|
end = time.time() |
|
|
|
generated_text = self.tokenizer.decode(output_tokens[0]) |
|
|
|
prediction = {'answer': generated_text.split('>>END<<')[0].split('>>ANSWER<<:')[1].strip(), 'time': f"{(end-start):.2f} s"} |
|
|
|
return prediction |