lv12 commited on
Commit
d791124
1 Parent(s): 459a40b

Add new SentenceTransformer model.

Browse files
Files changed (3) hide show
  1. README.md +219 -441
  2. config.json +1 -1
  3. model.safetensors +1 -1
README.md CHANGED
@@ -6,7 +6,7 @@ tags:
6
  - sentence-similarity
7
  - feature-extraction
8
  - dataset_size:100K<n<1M
9
- - loss:TripletLoss
10
  base_model: nomic-ai/nomic-embed-text-v1.5
11
  metrics:
12
  - cosine_accuracy
@@ -15,31 +15,31 @@ metrics:
15
  - euclidean_accuracy
16
  - max_accuracy
17
  widget:
18
- - source_sentence: 'search_query: floral'
19
  sentences:
20
- - 'search_query: hair dryer'
21
- - 'search_query: leporad tumbler'
22
- - 'search_query: cerrojo sin cerradura'
23
- - source_sentence: 'search_query: 赤ワイシャツ'
24
  sentences:
25
- - 'search_query: sワークス ロードシューズ'
26
- - 'search_query: ropa astronauta'
27
- - 'search_query: rosa azul preservada'
28
- - source_sentence: 'search_query: ギター カポ'
29
  sentences:
30
- - 'search_query: カゴバック'
31
- - 'search_query: midi flowy dress'
32
- - 'search_query: pesticide sprayer'
33
- - source_sentence: 'search_query: note 9'
34
  sentences:
35
- - 'search_query: samsung s9'
36
- - 'search_query: wallflower jeans'
37
- - 'search_query: 12 pomos sin tornillos'
38
- - source_sentence: 'search_query: 傘 鬼滅の刃'
39
  sentences:
40
- - 'search_query: 充電器のコード'
41
- - 'search_query: お札 折ら ない ミニ 財布'
42
- - 'search_query: buffalo plaid earrings'
43
  pipeline_tag: sentence-similarity
44
  model-index:
45
  - name: SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5
@@ -52,19 +52,19 @@ model-index:
52
  type: triplet-esci
53
  metrics:
54
  - type: cosine_accuracy
55
- value: 0.658
56
  name: Cosine Accuracy
57
  - type: dot_accuracy
58
- value: 0.342
59
  name: Dot Accuracy
60
  - type: manhattan_accuracy
61
- value: 0.657
62
  name: Manhattan Accuracy
63
  - type: euclidean_accuracy
64
- value: 0.657
65
  name: Euclidean Accuracy
66
  - type: max_accuracy
67
- value: 0.658
68
  name: Max Accuracy
69
  ---
70
 
@@ -117,9 +117,9 @@ from sentence_transformers import SentenceTransformer
117
  model = SentenceTransformer("sentence_transformers_model_id")
118
  # Run inference
119
  sentences = [
120
- 'search_query: 傘 鬼滅の刃',
121
- 'search_query: 充電器のコード',
122
- 'search_query: お札 折ら ない ミニ 財布',
123
  ]
124
  embeddings = model.encode(sentences)
125
  print(embeddings.shape)
@@ -165,11 +165,11 @@ You can finetune this model on your own dataset.
165
 
166
  | Metric | Value |
167
  |:--------------------|:----------|
168
- | **cosine_accuracy** | **0.658** |
169
- | dot_accuracy | 0.342 |
170
- | manhattan_accuracy | 0.657 |
171
- | euclidean_accuracy | 0.657 |
172
- | max_accuracy | 0.658 |
173
 
174
  <!--
175
  ## Bias, Risks and Limitations
@@ -196,18 +196,18 @@ You can finetune this model on your own dataset.
196
  | | anchor | positive | negative |
197
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
198
  | type | string | string | string |
199
- | details | <ul><li>min: 7 tokens</li><li>mean: 12.21 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 51.18 tokens</li><li>max: 209 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 52.69 tokens</li><li>max: 175 tokens</li></ul> |
200
  * Samples:
201
- | anchor | positive | negative |
202
- |:-----------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
203
- | <code>search_query: college cactus backpack</code> | <code>search_document: Teecho Waterproof Cute Backpack for Girl Casual Print School Bag Women Laptop Backpack Cactus, Teecho, Cactus</code> | <code>search_document: JanSport Huntington Backpack - Lightweight Laptop Bag | Edo Floral, JanSport, Edo Floral</code> |
204
- | <code>search_query: yellow laces for sneakers</code> | <code>search_document: DELELE Solid Flat Shoelaces Hollow Thick Athletic Shoe Laces Strings Light Yellow 2 Pair 63", DELELE, 05 Light Yellow</code> | <code>search_document: Marrywindix 29 Pairs 47" Flat Colourful Athletic Shoe Laces for Sneakers Skate Shoes Boots Sport Shoes (29 Colors), Marrywindix, Colorful</code> |
205
- | <code>search_query: home sign grey</code> | <code>search_document: Bigtime Signs Home Sweet Home Sign - 11.75 inch x 9 inch Rigid PVC Signs Decor - Printed Rustic Wood LOOK - Predrilled Hole for Easy Hanging - Family Decoration for Home, Door, Mantle, Porch, Bigtime Signs, Home Sweet Home</code> | <code>search_document: Yankario Funny Bathroom Wall Decor Sign, Farmhouse Rustic Bathroom Decorations Wall Art , 12" by 6" Best Seat Wood Plaque, Yankario, grey 1</code> |
206
- * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
207
  ```json
208
  {
209
- "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
210
- "triplet_margin": 5
211
  }
212
  ```
213
 
@@ -222,18 +222,18 @@ You can finetune this model on your own dataset.
222
  | | anchor | positive | negative |
223
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
224
  | type | string | string | string |
225
- | details | <ul><li>min: 7 tokens</li><li>mean: 12.24 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 53.16 tokens</li><li>max: 173 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 53.72 tokens</li><li>max: 175 tokens</li></ul> |
226
  * Samples:
227
- | anchor | positive | negative |
228
- |:---------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
229
- | <code>search_query: black vinyl placemat</code> | <code>search_document: Red-A Dining Table Placemats Set of 4 Heat-Resistant Wipeable Table Mats for Kitchen Table Decoration Waterproof Vinyl Placemats Easy to Clean,Black w/Brown, Red-A, Black</code> | <code>search_document: Winknowl Placemats, Set of 8 Heat Resistant Stain Resistant Non-Slip Woven Vinyl Insulation Placemats, Washable Durable Elegant Table Mats for Dining (Black), Winknowl, Black</code> |
230
- | <code>search_query: 1 1/2 leather belts without buckle</code> | <code>search_document: Vatee's Women's/Men's Real Leather Replacement Belt Strap No Buckle 1 1/2"(38mm) Wide 45" Long Black, Vatee's, 154: Black</code> | <code>search_document: Women Skinny Leather Belt Thin Waist Jeans Belt for Pants in Pin Buckle Belt by WHIPPY, Black/Brown, Suit Pants 24-29 Inches, WHIPPY, 2-black+brown</code> |
231
- | <code>search_query: 1x cat 7a conector de red rj45 sin herramientas</code> | <code>search_document: deleyCON 3,0m RJ45 Cable Plano Cable de Red de Categoría CAT7 Cable Ethernet U/FTP con Revestimiento Interior de Cobre - Negro, deleyCON, Negro</code> | <code>search_document: Conector de Odedo®, 2 unidades, categoría 6, UTP RJ45, para cable de conexión, prolongación de 6,3 mm, AWG 23-26 montaje sin herramientas, contactos dorados, odedo, Weiß</code> |
232
- * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
233
  ```json
234
  {
235
- "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
236
- "triplet_margin": 5
237
  }
238
  ```
239
 
@@ -242,11 +242,14 @@ You can finetune this model on your own dataset.
242
 
243
  - `per_device_train_batch_size`: 4
244
  - `per_device_eval_batch_size`: 4
245
- - `learning_rate`: 1e-05
246
- - `lr_scheduler_type`: cosine_with_restarts
 
247
  - `warmup_ratio`: 0.1
248
  - `dataloader_drop_last`: True
249
  - `dataloader_num_workers`: 4
 
 
250
  - `batch_sampler`: no_duplicates
251
 
252
  #### All Hyperparameters
@@ -259,9 +262,9 @@ You can finetune this model on your own dataset.
259
  - `per_device_eval_batch_size`: 4
260
  - `per_gpu_train_batch_size`: None
261
  - `per_gpu_eval_batch_size`: None
262
- - `gradient_accumulation_steps`: 1
263
  - `eval_accumulation_steps`: None
264
- - `learning_rate`: 1e-05
265
  - `weight_decay`: 0.0
266
  - `adam_beta1`: 0.9
267
  - `adam_beta2`: 0.999
@@ -269,7 +272,7 @@ You can finetune this model on your own dataset.
269
  - `max_grad_norm`: 1.0
270
  - `num_train_epochs`: 3
271
  - `max_steps`: -1
272
- - `lr_scheduler_type`: cosine_with_restarts
273
  - `lr_scheduler_kwargs`: {}
274
  - `warmup_ratio`: 0.1
275
  - `warmup_steps`: 0
@@ -301,12 +304,12 @@ You can finetune this model on your own dataset.
301
  - `debug`: []
302
  - `dataloader_drop_last`: True
303
  - `dataloader_num_workers`: 4
304
- - `dataloader_prefetch_factor`: None
305
  - `past_index`: -1
306
  - `disable_tqdm`: False
307
  - `remove_unused_columns`: True
308
  - `label_names`: None
309
- - `load_best_model_at_end`: False
310
  - `ignore_data_skip`: False
311
  - `fsdp`: []
312
  - `fsdp_min_num_params`: 0
@@ -363,381 +366,156 @@ You can finetune this model on your own dataset.
363
 
364
  | Epoch | Step | Training Loss | loss | triplet-esci_cosine_accuracy |
365
  |:------:|:-----:|:-------------:|:------:|:----------------------------:|
366
- | 0.008 | 200 | 3.9805 | - | - |
367
- | 0.016 | 400 | 4.0739 | - | - |
368
- | 0.024 | 600 | 4.0571 | - | - |
369
- | 0.032 | 800 | 3.8848 | - | - |
370
- | 0.04 | 1000 | 3.8249 | 3.9825 | 0.664 |
371
- | 0.048 | 1200 | 3.7097 | - | - |
372
- | 0.056 | 1400 | 3.6869 | - | - |
373
- | 0.064 | 1600 | 3.4327 | - | - |
374
- | 0.072 | 1800 | 3.64 | - | - |
375
- | 0.08 | 2000 | 3.3813 | 3.8244 | 0.657 |
376
- | 0.088 | 2200 | 3.4011 | - | - |
377
- | 0.096 | 2400 | 3.34 | - | - |
378
- | 0.104 | 2600 | 3.2488 | - | - |
379
- | 0.112 | 2800 | 3.5031 | - | - |
380
- | 0.12 | 3000 | 3.3615 | 3.7263 | 0.674 |
381
- | 0.128 | 3200 | 3.1028 | - | - |
382
- | 0.136 | 3400 | 3.2969 | - | - |
383
- | 0.144 | 3600 | 3.0463 | - | - |
384
- | 0.152 | 3800 | 3.1194 | - | - |
385
- | 0.16 | 4000 | 3.2372 | 3.6599 | 0.673 |
386
- | 0.168 | 4200 | 3.2954 | - | - |
387
- | 0.176 | 4400 | 3.2753 | - | - |
388
- | 0.184 | 4600 | 3.179 | - | - |
389
- | 0.192 | 4800 | 3.2646 | - | - |
390
- | 0.2 | 5000 | 3.1295 | 3.6405 | 0.677 |
391
- | 0.208 | 5200 | 3.2211 | - | - |
392
- | 0.216 | 5400 | 3.2222 | - | - |
393
- | 0.224 | 5600 | 2.9471 | - | - |
394
- | 0.232 | 5800 | 3.1564 | - | - |
395
- | 0.24 | 6000 | 3.1099 | 3.6138 | 0.684 |
396
- | 0.248 | 6200 | 2.9399 | - | - |
397
- | 0.256 | 6400 | 3.1087 | - | - |
398
- | 0.264 | 6600 | 3.2675 | - | - |
399
- | 0.272 | 6800 | 3.2149 | - | - |
400
- | 0.28 | 7000 | 2.9484 | 3.6086 | 0.673 |
401
- | 0.288 | 7200 | 3.0829 | - | - |
402
- | 0.296 | 7400 | 3.1864 | - | - |
403
- | 0.304 | 7600 | 3.1201 | - | - |
404
- | 0.312 | 7800 | 3.0698 | - | - |
405
- | 0.32 | 8000 | 2.9968 | 3.5750 | 0.668 |
406
- | 0.328 | 8200 | 3.0636 | - | - |
407
- | 0.336 | 8400 | 3.1293 | - | - |
408
- | 0.344 | 8600 | 3.1282 | - | - |
409
- | 0.352 | 8800 | 3.1415 | - | - |
410
- | 0.36 | 9000 | 2.7868 | 3.5211 | 0.693 |
411
- | 0.368 | 9200 | 2.9714 | - | - |
412
- | 0.376 | 9400 | 2.9409 | - | - |
413
- | 0.384 | 9600 | 2.9071 | - | - |
414
- | 0.392 | 9800 | 2.9154 | - | - |
415
- | 0.4 | 10000 | 2.9709 | 3.5510 | 0.683 |
416
- | 0.408 | 10200 | 2.741 | - | - |
417
- | 0.416 | 10400 | 2.678 | - | - |
418
- | 0.424 | 10600 | 2.8429 | - | - |
419
- | 0.432 | 10800 | 2.9782 | - | - |
420
- | 0.44 | 11000 | 2.9548 | 3.5369 | 0.681 |
421
- | 0.448 | 11200 | 2.8452 | - | - |
422
- | 0.456 | 11400 | 2.8578 | - | - |
423
- | 0.464 | 11600 | 2.9211 | - | - |
424
- | 0.472 | 11800 | 2.897 | - | - |
425
- | 0.48 | 12000 | 2.7651 | 3.6031 | 0.687 |
426
- | 0.488 | 12200 | 2.9472 | - | - |
427
- | 0.496 | 12400 | 2.6198 | - | - |
428
- | 0.504 | 12600 | 2.8444 | - | - |
429
- | 0.512 | 12800 | 2.7384 | - | - |
430
- | 0.52 | 13000 | 2.7827 | 3.6082 | 0.68 |
431
- | 0.528 | 13200 | 2.6882 | - | - |
432
- | 0.536 | 13400 | 2.6722 | - | - |
433
- | 0.544 | 13600 | 2.7218 | - | - |
434
- | 0.552 | 13800 | 2.7278 | - | - |
435
- | 0.56 | 14000 | 2.7156 | 3.5606 | 0.677 |
436
- | 0.568 | 14200 | 2.5748 | - | - |
437
- | 0.576 | 14400 | 2.5414 | - | - |
438
- | 0.584 | 14600 | 2.6918 | - | - |
439
- | 0.592 | 14800 | 2.5429 | - | - |
440
- | 0.6 | 15000 | 2.5724 | 3.5178 | 0.694 |
441
- | 0.608 | 15200 | 2.7594 | - | - |
442
- | 0.616 | 15400 | 2.4841 | - | - |
443
- | 0.624 | 15600 | 2.4667 | - | - |
444
- | 0.632 | 15800 | 2.6253 | - | - |
445
- | 0.64 | 16000 | 2.5001 | 3.5428 | 0.683 |
446
- | 0.648 | 16200 | 2.5707 | - | - |
447
- | 0.656 | 16400 | 2.4924 | - | - |
448
- | 0.664 | 16600 | 2.5419 | - | - |
449
- | 0.672 | 16800 | 2.487 | - | - |
450
- | 0.68 | 17000 | 2.4747 | 3.5825 | 0.681 |
451
- | 0.688 | 17200 | 2.4194 | - | - |
452
- | 0.696 | 17400 | 2.5714 | - | - |
453
- | 0.704 | 17600 | 2.4069 | - | - |
454
- | 0.712 | 17800 | 2.5767 | - | - |
455
- | 0.72 | 18000 | 2.5952 | 3.6268 | 0.684 |
456
- | 0.728 | 18200 | 2.4023 | - | - |
457
- | 0.736 | 18400 | 2.3989 | - | - |
458
- | 0.744 | 18600 | 2.379 | - | - |
459
- | 0.752 | 18800 | 2.4943 | - | - |
460
- | 0.76 | 19000 | 2.3762 | 3.5686 | 0.701 |
461
- | 0.768 | 19200 | 2.4825 | - | - |
462
- | 0.776 | 19400 | 2.4451 | - | - |
463
- | 0.784 | 19600 | 2.5374 | - | - |
464
- | 0.792 | 19800 | 2.4569 | - | - |
465
- | 0.8 | 20000 | 2.2353 | 3.6429 | 0.681 |
466
- | 0.808 | 20200 | 2.3447 | - | - |
467
- | 0.816 | 20400 | 2.3083 | - | - |
468
- | 0.824 | 20600 | 2.2126 | - | - |
469
- | 0.832 | 20800 | 2.3935 | - | - |
470
- | 0.84 | 21000 | 2.5115 | 3.6387 | 0.68 |
471
- | 0.848 | 21200 | 2.1469 | - | - |
472
- | 0.856 | 21400 | 2.2717 | - | - |
473
- | 0.864 | 21600 | 2.2993 | - | - |
474
- | 0.872 | 21800 | 2.3519 | - | - |
475
- | 0.88 | 22000 | 2.2947 | 3.5908 | 0.671 |
476
- | 0.888 | 22200 | 2.3249 | - | - |
477
- | 0.896 | 22400 | 2.2452 | - | - |
478
- | 0.904 | 22600 | 2.114 | - | - |
479
- | 0.912 | 22800 | 2.208 | - | - |
480
- | 0.92 | 23000 | 2.4168 | 3.6659 | 0.671 |
481
- | 0.928 | 23200 | 2.2098 | - | - |
482
- | 0.936 | 23400 | 2.1805 | - | - |
483
- | 0.944 | 23600 | 2.122 | - | - |
484
- | 0.952 | 23800 | 2.1364 | - | - |
485
- | 0.96 | 24000 | 2.1464 | 3.6284 | 0.671 |
486
- | 0.968 | 24200 | 2.1298 | - | - |
487
- | 0.976 | 24400 | 2.2657 | - | - |
488
- | 0.984 | 24600 | 2.304 | - | - |
489
- | 0.992 | 24800 | 2.175 | - | - |
490
- | 1.0 | 25000 | 2.1349 | 3.6532 | 0.681 |
491
- | 1.008 | 25200 | 2.0151 | - | - |
492
- | 1.016 | 25400 | 2.0881 | - | - |
493
- | 1.024 | 25600 | 1.9897 | - | - |
494
- | 1.032 | 25800 | 2.1987 | - | - |
495
- | 1.04 | 26000 | 1.9913 | 3.6511 | 0.672 |
496
- | 1.048 | 26200 | 1.9088 | - | - |
497
- | 1.056 | 26400 | 1.9555 | - | - |
498
- | 1.064 | 26600 | 1.6892 | - | - |
499
- | 1.072 | 26800 | 2.0404 | - | - |
500
- | 1.08 | 27000 | 1.6976 | 3.6465 | 0.671 |
501
- | 1.088 | 27200 | 1.894 | - | - |
502
- | 1.096 | 27400 | 1.8056 | - | - |
503
- | 1.104 | 27600 | 1.6426 | - | - |
504
- | 1.112 | 27800 | 2.0203 | - | - |
505
- | 1.12 | 28000 | 1.697 | 3.6182 | 0.681 |
506
- | 1.1280 | 28200 | 1.5562 | - | - |
507
- | 1.1360 | 28400 | 1.6061 | - | - |
508
- | 1.144 | 28600 | 1.5201 | - | - |
509
- | 1.152 | 28800 | 1.4388 | - | - |
510
- | 1.16 | 29000 | 1.5198 | 3.5924 | 0.676 |
511
- | 1.168 | 29200 | 1.6404 | - | - |
512
- | 1.176 | 29400 | 1.6058 | - | - |
513
- | 1.184 | 29600 | 1.6063 | - | - |
514
- | 1.192 | 29800 | 1.4398 | - | - |
515
- | 1.2 | 30000 | 1.4952 | 3.6587 | 0.665 |
516
- | 1.208 | 30200 | 1.5077 | - | - |
517
- | 1.216 | 30400 | 1.3177 | - | - |
518
- | 1.224 | 30600 | 1.095 | - | - |
519
- | 1.232 | 30800 | 1.2841 | - | - |
520
- | 1.24 | 31000 | 1.3544 | 3.6066 | 0.684 |
521
- | 1.248 | 31200 | 1.2188 | - | - |
522
- | 1.256 | 31400 | 1.1761 | - | - |
523
- | 1.264 | 31600 | 1.2601 | - | - |
524
- | 1.272 | 31800 | 1.2057 | - | - |
525
- | 1.28 | 32000 | 1.0478 | 3.6371 | 0.681 |
526
- | 1.288 | 32200 | 1.0888 | - | - |
527
- | 1.296 | 32400 | 1.1335 | - | - |
528
- | 1.304 | 32600 | 1.1297 | - | - |
529
- | 1.312 | 32800 | 1.0302 | - | - |
530
- | 1.32 | 33000 | 1.0583 | 3.6186 | 0.685 |
531
- | 1.328 | 33200 | 1.0623 | - | - |
532
- | 1.336 | 33400 | 0.9047 | - | - |
533
- | 1.3440 | 33600 | 1.0706 | - | - |
534
- | 1.3520 | 33800 | 1.0877 | - | - |
535
- | 1.3600 | 34000 | 0.8205 | 3.6613 | 0.653 |
536
- | 1.3680 | 34200 | 0.9596 | - | - |
537
- | 1.376 | 34400 | 0.8855 | - | - |
538
- | 1.384 | 34600 | 0.9186 | - | - |
539
- | 1.392 | 34800 | 0.8087 | - | - |
540
- | 1.4 | 35000 | 0.9732 | 3.6558 | 0.662 |
541
- | 1.408 | 35200 | 0.8753 | - | - |
542
- | 1.416 | 35400 | 0.8257 | - | - |
543
- | 1.424 | 35600 | 0.8689 | - | - |
544
- | 1.432 | 35800 | 0.8596 | - | - |
545
- | 1.44 | 36000 | 0.9202 | 3.6872 | 0.66 |
546
- | 1.448 | 36200 | 0.8993 | - | - |
547
- | 1.456 | 36400 | 0.8889 | - | - |
548
- | 1.464 | 36600 | 0.9138 | - | - |
549
- | 1.472 | 36800 | 0.8212 | - | - |
550
- | 1.48 | 37000 | 0.7591 | 3.6708 | 0.666 |
551
- | 1.488 | 37200 | 0.769 | - | - |
552
- | 1.496 | 37400 | 0.8656 | - | - |
553
- | 1.504 | 37600 | 0.9134 | - | - |
554
- | 1.512 | 37800 | 0.7212 | - | - |
555
- | 1.52 | 38000 | 0.8118 | 3.6249 | 0.672 |
556
- | 1.528 | 38200 | 0.7454 | - | - |
557
- | 1.536 | 38400 | 0.7491 | - | - |
558
- | 1.544 | 38600 | 0.8148 | - | - |
559
- | 1.552 | 38800 | 0.6845 | - | - |
560
- | 1.56 | 39000 | 0.6169 | 3.6868 | 0.679 |
561
- | 1.568 | 39200 | 0.7377 | - | - |
562
- | 1.576 | 39400 | 0.7296 | - | - |
563
- | 1.584 | 39600 | 0.7204 | - | - |
564
- | 1.592 | 39800 | 0.6748 | - | - |
565
- | 1.6 | 40000 | 0.6494 | 3.7054 | 0.673 |
566
- | 1.608 | 40200 | 0.7435 | - | - |
567
- | 1.616 | 40400 | 0.6196 | - | - |
568
- | 1.624 | 40600 | 0.6977 | - | - |
569
- | 1.6320 | 40800 | 0.7442 | - | - |
570
- | 1.6400 | 41000 | 0.5824 | 3.7500 | 0.66 |
571
- | 1.6480 | 41200 | 0.6144 | - | - |
572
- | 1.6560 | 41400 | 0.5909 | - | - |
573
- | 1.6640 | 41600 | 0.6717 | - | - |
574
- | 1.6720 | 41800 | 0.6436 | - | - |
575
- | 1.6800 | 42000 | 0.6161 | 3.6769 | 0.676 |
576
- | 1.688 | 42200 | 0.5282 | - | - |
577
- | 1.696 | 42400 | 0.6647 | - | - |
578
- | 1.704 | 42600 | 0.649 | - | - |
579
- | 1.712 | 42800 | 0.6284 | - | - |
580
- | 1.72 | 43000 | 0.7055 | 3.6992 | 0.671 |
581
- | 1.728 | 43200 | 0.6249 | - | - |
582
- | 1.736 | 43400 | 0.5722 | - | - |
583
- | 1.744 | 43600 | 0.621 | - | - |
584
- | 1.752 | 43800 | 0.6129 | - | - |
585
- | 1.76 | 44000 | 0.501 | 3.7589 | 0.662 |
586
- | 1.768 | 44200 | 0.5566 | - | - |
587
- | 1.776 | 44400 | 0.576 | - | - |
588
- | 1.784 | 44600 | 0.6428 | - | - |
589
- | 1.792 | 44800 | 0.5629 | - | - |
590
- | 1.8 | 45000 | 0.5134 | 3.7530 | 0.659 |
591
- | 1.808 | 45200 | 0.4681 | - | - |
592
- | 1.8160 | 45400 | 0.6268 | - | - |
593
- | 1.8240 | 45600 | 0.5877 | - | - |
594
- | 1.8320 | 45800 | 0.5219 | - | - |
595
- | 1.8400 | 46000 | 0.545 | 3.7755 | 0.658 |
596
- | 1.8480 | 46200 | 0.4539 | - | - |
597
- | 1.8560 | 46400 | 0.5255 | - | - |
598
- | 1.8640 | 46600 | 0.5573 | - | - |
599
- | 1.8720 | 46800 | 0.5508 | - | - |
600
- | 1.88 | 47000 | 0.5391 | 3.7489 | 0.653 |
601
- | 1.888 | 47200 | 0.4276 | - | - |
602
- | 1.896 | 47400 | 0.4906 | - | - |
603
- | 1.904 | 47600 | 0.3771 | - | - |
604
- | 1.912 | 47800 | 0.4959 | - | - |
605
- | 1.92 | 48000 | 0.5377 | 3.7770 | 0.658 |
606
- | 1.928 | 48200 | 0.4807 | - | - |
607
- | 1.936 | 48400 | 0.5239 | - | - |
608
- | 1.944 | 48600 | 0.4441 | - | - |
609
- | 1.952 | 48800 | 0.4536 | - | - |
610
- | 1.96 | 49000 | 0.5265 | 3.7507 | 0.669 |
611
- | 1.968 | 49200 | 0.3817 | - | - |
612
- | 1.976 | 49400 | 0.4468 | - | - |
613
- | 1.984 | 49600 | 0.5766 | - | - |
614
- | 1.992 | 49800 | 0.4789 | - | - |
615
- | 2.0 | 50000 | 0.4853 | 3.7328 | 0.663 |
616
- | 2.008 | 50200 | 0.3744 | - | - |
617
- | 2.016 | 50400 | 0.4662 | - | - |
618
- | 2.024 | 50600 | 0.394 | - | - |
619
- | 2.032 | 50800 | 0.3938 | - | - |
620
- | 2.04 | 51000 | 0.3586 | 3.8004 | 0.656 |
621
- | 2.048 | 51200 | 0.3522 | - | - |
622
- | 2.056 | 51400 | 0.4173 | - | - |
623
- | 2.064 | 51600 | 0.3177 | - | - |
624
- | 2.072 | 51800 | 0.4113 | - | - |
625
- | 2.08 | 52000 | 0.3027 | 3.7366 | 0.665 |
626
- | 2.088 | 52200 | 0.3693 | - | - |
627
- | 2.096 | 52400 | 0.4268 | - | - |
628
- | 2.104 | 52600 | 0.3678 | - | - |
629
- | 2.112 | 52800 | 0.4192 | - | - |
630
- | 2.12 | 53000 | 0.3105 | 3.7831 | 0.661 |
631
- | 2.128 | 53200 | 0.3228 | - | - |
632
- | 2.136 | 53400 | 0.2408 | - | - |
633
- | 2.144 | 53600 | 0.2804 | - | - |
634
- | 2.152 | 53800 | 0.3034 | - | - |
635
- | 2.16 | 54000 | 0.3562 | 3.7866 | 0.656 |
636
- | 2.168 | 54200 | 0.3526 | - | - |
637
- | 2.176 | 54400 | 0.414 | - | - |
638
- | 2.184 | 54600 | 0.3678 | - | - |
639
- | 2.192 | 54800 | 0.2965 | - | - |
640
- | 2.2 | 55000 | 0.3691 | 3.8108 | 0.655 |
641
- | 2.208 | 55200 | 0.2739 | - | - |
642
- | 2.216 | 55400 | 0.3283 | - | - |
643
- | 2.224 | 55600 | 0.2133 | - | - |
644
- | 2.232 | 55800 | 0.2582 | - | - |
645
- | 2.24 | 56000 | 0.3234 | 3.7370 | 0.665 |
646
- | 2.248 | 56200 | 0.2702 | - | - |
647
- | 2.2560 | 56400 | 0.2713 | - | - |
648
- | 2.2640 | 56600 | 0.2988 | - | - |
649
- | 2.2720 | 56800 | 0.2338 | - | - |
650
- | 2.2800 | 57000 | 0.183 | 3.7459 | 0.658 |
651
- | 2.288 | 57200 | 0.2517 | - | - |
652
- | 2.296 | 57400 | 0.2585 | - | - |
653
- | 2.304 | 57600 | 0.2113 | - | - |
654
- | 2.312 | 57800 | 0.1935 | - | - |
655
- | 2.32 | 58000 | 0.2307 | 3.7409 | 0.661 |
656
- | 2.328 | 58200 | 0.2353 | - | - |
657
- | 2.336 | 58400 | 0.2099 | - | - |
658
- | 2.344 | 58600 | 0.2823 | - | - |
659
- | 2.352 | 58800 | 0.2071 | - | - |
660
- | 2.36 | 59000 | 0.1928 | 3.7614 | 0.65 |
661
- | 2.368 | 59200 | 0.1616 | - | - |
662
- | 2.376 | 59400 | 0.1727 | - | - |
663
- | 2.384 | 59600 | 0.1745 | - | - |
664
- | 2.392 | 59800 | 0.1736 | - | - |
665
- | 2.4 | 60000 | 0.2186 | 3.7309 | 0.659 |
666
- | 2.408 | 60200 | 0.1637 | - | - |
667
- | 2.416 | 60400 | 0.1957 | - | - |
668
- | 2.424 | 60600 | 0.1512 | - | - |
669
- | 2.432 | 60800 | 0.2133 | - | - |
670
- | 2.44 | 61000 | 0.2122 | 3.7318 | 0.658 |
671
- | 2.448 | 61200 | 0.1876 | - | - |
672
- | 2.456 | 61400 | 0.2201 | - | - |
673
- | 2.464 | 61600 | 0.1581 | - | - |
674
- | 2.472 | 61800 | 0.1856 | - | - |
675
- | 2.48 | 62000 | 0.1426 | 3.7491 | 0.657 |
676
- | 2.488 | 62200 | 0.1769 | - | - |
677
- | 2.496 | 62400 | 0.1706 | - | - |
678
- | 2.504 | 62600 | 0.2492 | - | - |
679
- | 2.512 | 62800 | 0.2026 | - | - |
680
- | 2.52 | 63000 | 0.1612 | 3.7638 | 0.66 |
681
- | 2.528 | 63200 | 0.21 | - | - |
682
- | 2.536 | 63400 | 0.1183 | - | - |
683
- | 2.544 | 63600 | 0.2244 | - | - |
684
- | 2.552 | 63800 | 0.1503 | - | - |
685
- | 2.56 | 64000 | 0.1581 | 3.7668 | 0.661 |
686
- | 2.568 | 64200 | 0.1887 | - | - |
687
- | 2.576 | 64400 | 0.1873 | - | - |
688
- | 2.584 | 64600 | 0.1939 | - | - |
689
- | 2.592 | 64800 | 0.2089 | - | - |
690
- | 2.6 | 65000 | 0.1839 | 3.7631 | 0.657 |
691
- | 2.608 | 65200 | 0.1508 | - | - |
692
- | 2.616 | 65400 | 0.1247 | - | - |
693
- | 2.624 | 65600 | 0.1457 | - | - |
694
- | 2.632 | 65800 | 0.1267 | - | - |
695
- | 2.64 | 66000 | 0.1327 | 3.7712 | 0.656 |
696
- | 2.648 | 66200 | 0.1295 | - | - |
697
- | 2.656 | 66400 | 0.1222 | - | - |
698
- | 2.664 | 66600 | 0.1227 | - | - |
699
- | 2.672 | 66800 | 0.1445 | - | - |
700
- | 2.68 | 67000 | 0.1107 | 3.7753 | 0.659 |
701
- | 2.6880 | 67200 | 0.1173 | - | - |
702
- | 2.6960 | 67400 | 0.1743 | - | - |
703
- | 2.7040 | 67600 | 0.1521 | - | - |
704
- | 2.7120 | 67800 | 0.1516 | - | - |
705
- | 2.7200 | 68000 | 0.1537 | 3.7786 | 0.658 |
706
- | 2.7280 | 68200 | 0.108 | - | - |
707
- | 2.7360 | 68400 | 0.1636 | - | - |
708
- | 2.7440 | 68600 | 0.146 | - | - |
709
- | 2.752 | 68800 | 0.1342 | - | - |
710
- | 2.76 | 69000 | 0.0997 | 3.7753 | 0.658 |
711
- | 2.768 | 69200 | 0.0952 | - | - |
712
- | 2.776 | 69400 | 0.1372 | - | - |
713
- | 2.784 | 69600 | 0.1558 | - | - |
714
- | 2.792 | 69800 | 0.1352 | - | - |
715
- | 2.8 | 70000 | 0.1723 | 3.7772 | 0.656 |
716
- | 2.808 | 70200 | 0.1253 | - | - |
717
- | 2.816 | 70400 | 0.1756 | - | - |
718
- | 2.824 | 70600 | 0.1477 | - | - |
719
- | 2.832 | 70800 | 0.1305 | - | - |
720
- | 2.84 | 71000 | 0.1292 | 3.7787 | 0.656 |
721
- | 2.848 | 71200 | 0.0797 | - | - |
722
- | 2.856 | 71400 | 0.0955 | - | - |
723
- | 2.864 | 71600 | 0.1214 | - | - |
724
- | 2.872 | 71800 | 0.1704 | - | - |
725
- | 2.88 | 72000 | 0.1291 | 3.7794 | 0.658 |
726
- | 2.888 | 72200 | 0.0839 | - | - |
727
- | 2.896 | 72400 | 0.1142 | - | - |
728
- | 2.904 | 72600 | 0.0836 | - | - |
729
- | 2.912 | 72800 | 0.1011 | - | - |
730
- | 2.92 | 73000 | 0.153 | 3.7803 | 0.66 |
731
- | 2.928 | 73200 | 0.0975 | - | - |
732
- | 2.936 | 73400 | 0.1276 | - | - |
733
- | 2.944 | 73600 | 0.0993 | - | - |
734
- | 2.952 | 73800 | 0.1419 | - | - |
735
- | 2.96 | 74000 | 0.1414 | 3.7807 | 0.658 |
736
- | 2.968 | 74200 | 0.1105 | - | - |
737
- | 2.976 | 74400 | 0.1085 | - | - |
738
- | 2.984 | 74600 | 0.1281 | - | - |
739
- | 2.992 | 74800 | 0.1057 | - | - |
740
- | 3.0 | 75000 | 0.1197 | 3.7807 | 0.658 |
741
 
742
  </details>
743
 
@@ -767,15 +545,15 @@ You can finetune this model on your own dataset.
767
  }
768
  ```
769
 
770
- #### TripletLoss
771
  ```bibtex
772
- @misc{hermans2017defense,
773
- title={In Defense of the Triplet Loss for Person Re-Identification},
774
- author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
775
- year={2017},
776
- eprint={1703.07737},
777
  archivePrefix={arXiv},
778
- primaryClass={cs.CV}
779
  }
780
  ```
781
 
 
6
  - sentence-similarity
7
  - feature-extraction
8
  - dataset_size:100K<n<1M
9
+ - loss:CachedMultipleNegativesRankingLoss
10
  base_model: nomic-ai/nomic-embed-text-v1.5
11
  metrics:
12
  - cosine_accuracy
 
15
  - euclidean_accuracy
16
  - max_accuracy
17
  widget:
18
+ - source_sentence: 'search_query: shark'
19
  sentences:
20
+ - 'search_query: skull'
21
+ - 'search_query: car picture frame'
22
+ - 'search_query: cartera de guchi'
23
+ - source_sentence: 'search_query: aolvo'
24
  sentences:
25
+ - 'search_query: laço homem'
26
+ - 'search_query: vdi to hdmi cable'
27
+ - 'search_query: beads without holes'
28
+ - source_sentence: 'search_query: 赤色のカバン'
29
  sentences:
30
+ - 'search_query: 結婚式 ガーランド'
31
+ - 'search_query: remaches zapatero'
32
+ - 'search_query: small feaux potted plants'
33
+ - source_sentence: 'search_query: vipkid'
34
  sentences:
35
+ - 'search_query: ceiling lamps for kids'
36
+ - 'search_query: apple あいふぉんケース 12'
37
+ - 'search_query: zapatos zaragoza mujer'
38
+ - source_sentence: 'search_query: お布団バッグ'
39
  sentences:
40
+ - 'search_query: 足なしソファー'
41
+ - 'search_query: all color handbag'
42
+ - 'search_query: tundra black out emblems'
43
  pipeline_tag: sentence-similarity
44
  model-index:
45
  - name: SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5
 
52
  type: triplet-esci
53
  metrics:
54
  - type: cosine_accuracy
55
+ value: 0.787
56
  name: Cosine Accuracy
57
  - type: dot_accuracy
58
+ value: 0.22
59
  name: Dot Accuracy
60
  - type: manhattan_accuracy
61
+ value: 0.762
62
  name: Manhattan Accuracy
63
  - type: euclidean_accuracy
64
+ value: 0.768
65
  name: Euclidean Accuracy
66
  - type: max_accuracy
67
+ value: 0.787
68
  name: Max Accuracy
69
  ---
70
 
 
117
  model = SentenceTransformer("sentence_transformers_model_id")
118
  # Run inference
119
  sentences = [
120
+ 'search_query: お布団バッグ',
121
+ 'search_query: 足なしソファー',
122
+ 'search_query: all color handbag',
123
  ]
124
  embeddings = model.encode(sentences)
125
  print(embeddings.shape)
 
165
 
166
  | Metric | Value |
167
  |:--------------------|:----------|
168
+ | **cosine_accuracy** | **0.787** |
169
+ | dot_accuracy | 0.22 |
170
+ | manhattan_accuracy | 0.762 |
171
+ | euclidean_accuracy | 0.768 |
172
+ | max_accuracy | 0.787 |
173
 
174
  <!--
175
  ## Bias, Risks and Limitations
 
196
  | | anchor | positive | negative |
197
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
198
  | type | string | string | string |
199
+ | details | <ul><li>min: 7 tokens</li><li>mean: 12.11 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 49.91 tokens</li><li>max: 166 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 50.64 tokens</li><li>max: 152 tokens</li></ul> |
200
  * Samples:
201
+ | anchor | positive | negative |
202
+ |:------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------|
203
+ | <code>search_query: blー5c</code> | <code>search_document: [EnergyPower] TECSUN PL-368 電池2個セット SSB・同期検波・長波 [交換用バッテリーBL-5C付] デジタルDSPポケット短波ラジオ 超小型 長・中波用外付アンテナ 10キー ポータブルBCL受信機 FMステレオ/LW/MW/SW ワールドバンドレシーバー 850局プリセットメモリー シグナルメーター USB充電 スリープタイマー アラー, TECSUN, PL-368 電池+セット [ブラック]</code> | <code>search_document: RADIWOWで作る SIHUADON R108 ポータブル BCL短波ラジオAM FM LW SW 航空無線 DSPレシーバー LCD 良好屋内および屋外アクティビティの両親への贈り物, RADIWOW, グレー</code> |
204
+ | <code>search_query: かわいいロングtシャツ</code> | <code>search_document: レディース ロンt 半袖 tシャツ オーバーサイズ コットン スリット 大きいサイズ シャツ ビッグシルエット ワンピース シャツワンピ ロングtシャツ おおきいサイズ ピンク カジュアル カップ付き カーディガン キラキラ キャミソール キャミ サテン シンプル シニア シフォン シースルー シ, Sleeping Sheep(スリーピング シープ), ホワイト</code> | <code>search_document: Perkisboby スポーツウェア レディース ヨガウェア 4点セット 上下セット 5点セットウェア フィットネス 2点セット ジャージ スポーツブラ パンツ パーカー 半袖 ハーフパンツ, Perkisboby, 2点セット-グレー</code> |
205
+ | <code>search_query: iphone xr otterbox symmetry case</code> | <code>search_document: Symmetry Clear Series Case for iPhone XR (ONLY) Symmetry Case for iPhone XR Symmetry Case - Clear, VTSOU, Clear</code> | <code>search_document: OtterBox Symmetry Series Case for Apple iPhone XS Max - Tonic Violet / Purple, OtterBox, Tonic Violet / Purple</code> |
206
+ * Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
207
  ```json
208
  {
209
+ "scale": 20.0,
210
+ "similarity_fct": "cos_sim"
211
  }
212
  ```
213
 
 
222
  | | anchor | positive | negative |
223
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
224
  | type | string | string | string |
225
+ | details | <ul><li>min: 7 tokens</li><li>mean: 12.13 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 50.76 tokens</li><li>max: 173 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 54.25 tokens</li><li>max: 161 tokens</li></ul> |
226
  * Samples:
227
+ | anchor | positive | negative |
228
+ |:---------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------|
229
+ | <code>search_query: snack vending machine</code> | <code>search_document: Red All Metal Triple Compartment Commercial Vending Machine for 1 inch Gumballs, 1 inch Toy Capsules, Bouncy Balls, Candy, Nuts with Stand by American Gumball Company, American Gumball Company, CANDY RED</code> | <code>search_document: Vending Machine Halloween Costume - Funny Snack Food Adult Men & Women Outfits, Hauntlook, Multicolored</code> |
230
+ | <code>search_query: slim credit card holder without id window</code> | <code>search_document: Banuce Top Grain Leather Card Holder for Women Men Unisex ID Credit Card Case Slim Card Wallet Black, Banuce, 1 ID + 5 Card Slots: Black</code> | <code>search_document: Mens Wallet RFID Genuine Leather Bifold Wallets For Men, ID Window 16 Card Holders Gift Box, Swallowmall, Black Stripe</code> |
231
+ | <code>search_query: gucci belts for women</code> | <code>search_document: Gucci Women's Gg0027o 50Mm Optical Glasses, Gucci, Havana</code> | <code>search_document: Gucci G-Gucci Gold PVD Women's Watch(Model:YA125511), Gucci, PVD/Brown</code> |
232
+ * Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
233
  ```json
234
  {
235
+ "scale": 20.0,
236
+ "similarity_fct": "cos_sim"
237
  }
238
  ```
239
 
 
242
 
243
  - `per_device_train_batch_size`: 4
244
  - `per_device_eval_batch_size`: 4
245
+ - `gradient_accumulation_steps`: 2
246
+ - `learning_rate`: 1e-06
247
+ - `lr_scheduler_type`: cosine
248
  - `warmup_ratio`: 0.1
249
  - `dataloader_drop_last`: True
250
  - `dataloader_num_workers`: 4
251
+ - `dataloader_prefetch_factor`: 2
252
+ - `load_best_model_at_end`: True
253
  - `batch_sampler`: no_duplicates
254
 
255
  #### All Hyperparameters
 
262
  - `per_device_eval_batch_size`: 4
263
  - `per_gpu_train_batch_size`: None
264
  - `per_gpu_eval_batch_size`: None
265
+ - `gradient_accumulation_steps`: 2
266
  - `eval_accumulation_steps`: None
267
+ - `learning_rate`: 1e-06
268
  - `weight_decay`: 0.0
269
  - `adam_beta1`: 0.9
270
  - `adam_beta2`: 0.999
 
272
  - `max_grad_norm`: 1.0
273
  - `num_train_epochs`: 3
274
  - `max_steps`: -1
275
+ - `lr_scheduler_type`: cosine
276
  - `lr_scheduler_kwargs`: {}
277
  - `warmup_ratio`: 0.1
278
  - `warmup_steps`: 0
 
304
  - `debug`: []
305
  - `dataloader_drop_last`: True
306
  - `dataloader_num_workers`: 4
307
+ - `dataloader_prefetch_factor`: 2
308
  - `past_index`: -1
309
  - `disable_tqdm`: False
310
  - `remove_unused_columns`: True
311
  - `label_names`: None
312
+ - `load_best_model_at_end`: True
313
  - `ignore_data_skip`: False
314
  - `fsdp`: []
315
  - `fsdp_min_num_params`: 0
 
366
 
367
  | Epoch | Step | Training Loss | loss | triplet-esci_cosine_accuracy |
368
  |:------:|:-----:|:-------------:|:------:|:----------------------------:|
369
+ | 0.008 | 100 | 0.7191 | - | - |
370
+ | 0.016 | 200 | 0.6917 | - | - |
371
+ | 0.024 | 300 | 0.7129 | - | - |
372
+ | 0.032 | 400 | 0.6826 | - | - |
373
+ | 0.04 | 500 | 0.7317 | - | - |
374
+ | 0.048 | 600 | 0.7237 | - | - |
375
+ | 0.056 | 700 | 0.6904 | - | - |
376
+ | 0.064 | 800 | 0.6815 | - | - |
377
+ | 0.072 | 900 | 0.6428 | - | - |
378
+ | 0.08 | 1000 | 0.6561 | 0.6741 | 0.74 |
379
+ | 0.088 | 1100 | 0.6097 | - | - |
380
+ | 0.096 | 1200 | 0.6426 | - | - |
381
+ | 0.104 | 1300 | 0.618 | - | - |
382
+ | 0.112 | 1400 | 0.6346 | - | - |
383
+ | 0.12 | 1500 | 0.611 | - | - |
384
+ | 0.128 | 1600 | 0.6092 | - | - |
385
+ | 0.136 | 1700 | 0.6512 | - | - |
386
+ | 0.144 | 1800 | 0.646 | - | - |
387
+ | 0.152 | 1900 | 0.6584 | - | - |
388
+ | 0.16 | 2000 | 0.6403 | 0.6411 | 0.747 |
389
+ | 0.168 | 2100 | 0.5882 | - | - |
390
+ | 0.176 | 2200 | 0.6361 | - | - |
391
+ | 0.184 | 2300 | 0.5641 | - | - |
392
+ | 0.192 | 2400 | 0.5734 | - | - |
393
+ | 0.2 | 2500 | 0.6156 | - | - |
394
+ | 0.208 | 2600 | 0.6252 | - | - |
395
+ | 0.216 | 2700 | 0.634 | - | - |
396
+ | 0.224 | 2800 | 0.5743 | - | - |
397
+ | 0.232 | 2900 | 0.5222 | - | - |
398
+ | 0.24 | 3000 | 0.5604 | 0.6180 | 0.765 |
399
+ | 0.248 | 3100 | 0.5864 | - | - |
400
+ | 0.256 | 3200 | 0.5541 | - | - |
401
+ | 0.264 | 3300 | 0.5661 | - | - |
402
+ | 0.272 | 3400 | 0.5493 | - | - |
403
+ | 0.28 | 3500 | 0.556 | - | - |
404
+ | 0.288 | 3600 | 0.56 | - | - |
405
+ | 0.296 | 3700 | 0.5552 | - | - |
406
+ | 0.304 | 3800 | 0.5833 | - | - |
407
+ | 0.312 | 3900 | 0.5578 | - | - |
408
+ | 0.32 | 4000 | 0.5495 | 0.6009 | 0.769 |
409
+ | 0.328 | 4100 | 0.5245 | - | - |
410
+ | 0.336 | 4200 | 0.477 | - | - |
411
+ | 0.344 | 4300 | 0.5536 | - | - |
412
+ | 0.352 | 4400 | 0.5493 | - | - |
413
+ | 0.36 | 4500 | 0.532 | - | - |
414
+ | 0.368 | 4600 | 0.5341 | - | - |
415
+ | 0.376 | 4700 | 0.528 | - | - |
416
+ | 0.384 | 4800 | 0.5574 | - | - |
417
+ | 0.392 | 4900 | 0.4953 | - | - |
418
+ | 0.4 | 5000 | 0.5365 | 0.5969 | 0.779 |
419
+ | 0.408 | 5100 | 0.4835 | - | - |
420
+ | 0.416 | 5200 | 0.4573 | - | - |
421
+ | 0.424 | 5300 | 0.5554 | - | - |
422
+ | 0.432 | 5400 | 0.5623 | - | - |
423
+ | 0.44 | 5500 | 0.5955 | - | - |
424
+ | 0.448 | 5600 | 0.5086 | - | - |
425
+ | 0.456 | 5700 | 0.5081 | - | - |
426
+ | 0.464 | 5800 | 0.4829 | - | - |
427
+ | 0.472 | 5900 | 0.5066 | - | - |
428
+ | 0.48 | 6000 | 0.4997 | 0.5920 | 0.776 |
429
+ | 0.488 | 6100 | 0.5075 | - | - |
430
+ | 0.496 | 6200 | 0.5051 | - | - |
431
+ | 0.504 | 6300 | 0.5019 | - | - |
432
+ | 0.512 | 6400 | 0.4774 | - | - |
433
+ | 0.52 | 6500 | 0.4975 | - | - |
434
+ | 0.528 | 6600 | 0.4756 | - | - |
435
+ | 0.536 | 6700 | 0.4656 | - | - |
436
+ | 0.544 | 6800 | 0.4671 | - | - |
437
+ | 0.552 | 6900 | 0.4646 | - | - |
438
+ | 0.56 | 7000 | 0.5595 | 0.5853 | 0.777 |
439
+ | 0.568 | 7100 | 0.4812 | - | - |
440
+ | 0.576 | 7200 | 0.506 | - | - |
441
+ | 0.584 | 7300 | 0.49 | - | - |
442
+ | 0.592 | 7400 | 0.464 | - | - |
443
+ | 0.6 | 7500 | 0.441 | - | - |
444
+ | 0.608 | 7600 | 0.4492 | - | - |
445
+ | 0.616 | 7700 | 0.457 | - | - |
446
+ | 0.624 | 7800 | 0.493 | - | - |
447
+ | 0.632 | 7900 | 0.4174 | - | - |
448
+ | 0.64 | 8000 | 0.4686 | 0.5809 | 0.785 |
449
+ | 0.648 | 8100 | 0.4529 | - | - |
450
+ | 0.656 | 8200 | 0.4784 | - | - |
451
+ | 0.664 | 8300 | 0.4697 | - | - |
452
+ | 0.672 | 8400 | 0.4489 | - | - |
453
+ | 0.68 | 8500 | 0.4439 | - | - |
454
+ | 0.688 | 8600 | 0.4063 | - | - |
455
+ | 0.696 | 8700 | 0.4634 | - | - |
456
+ | 0.704 | 8800 | 0.4446 | - | - |
457
+ | 0.712 | 8900 | 0.4725 | - | - |
458
+ | 0.72 | 9000 | 0.3954 | 0.5769 | 0.781 |
459
+ | 0.728 | 9100 | 0.4536 | - | - |
460
+ | 0.736 | 9200 | 0.4583 | - | - |
461
+ | 0.744 | 9300 | 0.4415 | - | - |
462
+ | 0.752 | 9400 | 0.4716 | - | - |
463
+ | 0.76 | 9500 | 0.4393 | - | - |
464
+ | 0.768 | 9600 | 0.4332 | - | - |
465
+ | 0.776 | 9700 | 0.4236 | - | - |
466
+ | 0.784 | 9800 | 0.4021 | - | - |
467
+ | 0.792 | 9900 | 0.4324 | - | - |
468
+ | 0.8 | 10000 | 0.4197 | 0.5796 | 0.78 |
469
+ | 0.808 | 10100 | 0.4576 | - | - |
470
+ | 0.816 | 10200 | 0.4238 | - | - |
471
+ | 0.824 | 10300 | 0.4468 | - | - |
472
+ | 0.832 | 10400 | 0.4301 | - | - |
473
+ | 0.84 | 10500 | 0.414 | - | - |
474
+ | 0.848 | 10600 | 0.4563 | - | - |
475
+ | 0.856 | 10700 | 0.4212 | - | - |
476
+ | 0.864 | 10800 | 0.3905 | - | - |
477
+ | 0.872 | 10900 | 0.4384 | - | - |
478
+ | 0.88 | 11000 | 0.3474 | 0.5709 | 0.788 |
479
+ | 0.888 | 11100 | 0.4396 | - | - |
480
+ | 0.896 | 11200 | 0.3819 | - | - |
481
+ | 0.904 | 11300 | 0.3748 | - | - |
482
+ | 0.912 | 11400 | 0.4217 | - | - |
483
+ | 0.92 | 11500 | 0.3893 | - | - |
484
+ | 0.928 | 11600 | 0.3835 | - | - |
485
+ | 0.936 | 11700 | 0.4303 | - | - |
486
+ | 0.944 | 11800 | 0.4274 | - | - |
487
+ | 0.952 | 11900 | 0.4089 | - | - |
488
+ | 0.96 | 12000 | 0.4009 | 0.5710 | 0.786 |
489
+ | 0.968 | 12100 | 0.3832 | - | - |
490
+ | 0.976 | 12200 | 0.3543 | - | - |
491
+ | 0.984 | 12300 | 0.4866 | - | - |
492
+ | 0.992 | 12400 | 0.4531 | - | - |
493
+ | 1.0 | 12500 | 0.3728 | - | - |
494
+ | 1.008 | 12600 | 0.386 | - | - |
495
+ | 1.016 | 12700 | 0.3622 | - | - |
496
+ | 1.024 | 12800 | 0.4013 | - | - |
497
+ | 1.032 | 12900 | 0.3543 | - | - |
498
+ | 1.04 | 13000 | 0.3918 | 0.5712 | 0.792 |
499
+ | 1.048 | 13100 | 0.3961 | - | - |
500
+ | 1.056 | 13200 | 0.3804 | - | - |
501
+ | 1.064 | 13300 | 0.4049 | - | - |
502
+ | 1.072 | 13400 | 0.3374 | - | - |
503
+ | 1.08 | 13500 | 0.3746 | - | - |
504
+ | 1.088 | 13600 | 0.3162 | - | - |
505
+ | 1.096 | 13700 | 0.3536 | - | - |
506
+ | 1.104 | 13800 | 0.3101 | - | - |
507
+ | 1.112 | 13900 | 0.3704 | - | - |
508
+ | 1.12 | 14000 | 0.3412 | 0.5758 | 0.788 |
509
+ | 1.1280 | 14100 | 0.342 | - | - |
510
+ | 1.1360 | 14200 | 0.383 | - | - |
511
+ | 1.144 | 14300 | 0.3554 | - | - |
512
+ | 1.152 | 14400 | 0.4013 | - | - |
513
+ | 1.16 | 14500 | 0.3486 | - | - |
514
+ | 1.168 | 14600 | 0.3367 | - | - |
515
+ | 1.176 | 14700 | 0.3737 | - | - |
516
+ | 1.184 | 14800 | 0.319 | - | - |
517
+ | 1.192 | 14900 | 0.3211 | - | - |
518
+ | 1.2 | 15000 | 0.3284 | 0.5804 | 0.787 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
519
 
520
  </details>
521
 
 
545
  }
546
  ```
547
 
548
+ #### CachedMultipleNegativesRankingLoss
549
  ```bibtex
550
+ @misc{gao2021scaling,
551
+ title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
552
+ author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
553
+ year={2021},
554
+ eprint={2101.06983},
555
  archivePrefix={arXiv},
556
+ primaryClass={cs.LG}
557
  }
558
  ```
559
 
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "models/nomic-embed-text-esci/checkpoint-75000",
3
  "activation_function": "swiglu",
4
  "architectures": [
5
  "NomicBertModel"
 
1
  {
2
+ "_name_or_path": "models/nomic-embed-text-esci/checkpoint-15000",
3
  "activation_function": "swiglu",
4
  "architectures": [
5
  "NomicBertModel"
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ff8a9331c4fe4be2be01610969d1ba1816b10402a95b939d6d2390fb0395d2f4
3
  size 546938168
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c50404df18f7d56454c1d2e200beeea9386fbbbb465f583137054b0f476a2b4d
3
  size 546938168