File size: 1,921 Bytes
e3550fe bf6b1fc e3550fe bf6b1fc e3550fe bf6b1fc e3550fe bf6b1fc e3550fe bf6b1fc e3550fe bf6b1fc e3550fe bf6b1fc e3550fe bf6b1fc e3550fe bf6b1fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
tags:
- generated_from_trainer
model-index:
- name: span-marker-bert-base-multilingual-cased-multinerd
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# span-marker-bert-base-multilingual-cased-multinerd
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0049
- Overall Precision: 0.9242
- Overall Recall: 0.9281
- Overall F1: 0.9261
- Overall Accuracy: 0.9852
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.0129 | 1.0 | 50436 | 0.0042 | 0.9226 | 0.9169 | 0.9197 | 0.9837 |
| 0.0027 | 2.0 | 100873 | 0.0043 | 0.9255 | 0.9206 | 0.9230 | 0.9846 |
| 0.0015 | 3.0 | 151308 | 0.0049 | 0.9242 | 0.9281 | 0.9261 | 0.9852 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.3
- Tokenizers 0.13.3
|