lxyuan commited on
Commit
17e5bc1
·
1 Parent(s): c61fdfd

Fix test set result

Browse files
Files changed (1) hide show
  1. README.md +14 -4
README.md CHANGED
@@ -17,13 +17,13 @@ model-index:
17
  revision: 2814b78e7af4b5a1f1886fe7ad49632de4d9dd25
18
  metrics:
19
  - type: f1
20
- value: 0.9261
21
  name: F1
22
  - type: precision
23
- value: 0.9242
24
  name: Precision
25
  - type: recall
26
- value: 0.9281
27
  name: Recall
28
  license: apache-2.0
29
  datasets:
@@ -52,13 +52,23 @@ should probably proofread and complete it, then remove this comment. -->
52
  # span-marker-bert-base-multilingual-cased-multinerd
53
 
54
  This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an [Babelscape/multinerd](https://huggingface.co/datasets/Babelscape/multinerd) dataset.
55
- It achieves the following results on the test set:
56
  - Loss: 0.0049
57
  - Overall Precision: 0.9242
58
  - Overall Recall: 0.9281
59
  - Overall F1: 0.9261
60
  - Overall Accuracy: 0.9852
61
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  This is a replication of Tom's work. Everything remains unchanged,
64
  except that we extended the number of training epochs to 3 for a
 
17
  revision: 2814b78e7af4b5a1f1886fe7ad49632de4d9dd25
18
  metrics:
19
  - type: f1
20
+ value: 0.9270
21
  name: F1
22
  - type: precision
23
+ value: 0.9281
24
  name: Precision
25
  - type: recall
26
+ value: 0.9259
27
  name: Recall
28
  license: apache-2.0
29
  datasets:
 
52
  # span-marker-bert-base-multilingual-cased-multinerd
53
 
54
  This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an [Babelscape/multinerd](https://huggingface.co/datasets/Babelscape/multinerd) dataset.
55
+ It achieves the following results on the evaluation set:
56
  - Loss: 0.0049
57
  - Overall Precision: 0.9242
58
  - Overall Recall: 0.9281
59
  - Overall F1: 0.9261
60
  - Overall Accuracy: 0.9852
61
 
62
+ Test set results:
63
+ - test_loss: 0.005226554349064827,
64
+ - test_overall_accuracy: 0.9851129807294873,
65
+ - test_overall_f1: 0.9270450073152169,
66
+ - test_overall_precision: 0.9281906912835416,
67
+ - test_overall_recall: 0.9259021481405626,
68
+ - test_runtime: 2690.9722,
69
+ - test_samples_per_second: 150.748,
70
+ - test_steps_per_second: 4.711
71
+
72
 
73
  This is a replication of Tom's work. Everything remains unchanged,
74
  except that we extended the number of training epochs to 3 for a