--- base_model: bert-base-chinese tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1158 - Precision: 0.7635 - Recall: 0.7577 - F1: 0.7606 - Accuracy: 0.9626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1101 | 1.0 | 1875 | 0.1007 | 0.7357 | 0.7458 | 0.7407 | 0.9610 | | 0.0796 | 2.0 | 3750 | 0.1003 | 0.76 | 0.7530 | 0.7565 | 0.9627 | | 0.0538 | 3.0 | 5625 | 0.1158 | 0.7635 | 0.7577 | 0.7606 | 0.9626 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0 - Datasets 2.18.0 - Tokenizers 0.19.1