lyogavin commited on
Commit
2d052a9
1 Parent(s): e8a394e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -3
README.md CHANGED
@@ -61,10 +61,14 @@ Anima模型基于QLoRA开源的[33B guanaco](https://huggingface.co/timdettmers/
61
 
62
  #### 评估方法论
63
 
64
- * **数据集的选择**:如[Belle Paper](https://github.com/LianjiaTech/BELLE/blob/main/docs/Towards%20Better%20Instruction%20Following%20Language%20Models%20for%20Chinese.pdf)中论述,评估集的不同类型分布对于评估结论影响巨大。如田忌赛马,以己之长攻人之短,很容易占优势。因此我们选择了英文chatbot模型研究工作中比较普遍公认的[Vicuna benchmark](https://lmsys.org/blog/2023-03-30-vicuna/)。为了评测中文,我们使用GPT4对于问题做了翻译。翻译代码和数据集如下:。
65
  * **评估方法**: 为了平衡成本,我们主要采用GPT4进行评估。如[QLoRA](https://arxiv.org/abs/2305.14314) 论证,单纯GPT4打分进行模型的对比随机波动性较大。这与我们的观察一致。因此采用了[QLoRA](https://arxiv.org/abs/2305.14314) 推荐的,现在比较普遍采用的Elo Rating tournament评测方法。
66
  * **超参选择**:出于成本考虑,我们选择:300轮随机评估,随机选择模型PK的先后顺序以抵消先后顺序的影响,随机种子为:42。Elo rating的实现代码和其他超参参照[Vicuna的Elo代码](https://raw.githubusercontent.com/lm-sys/FastChat/833d65032a715240a3978f4a8f08e7a496c83cb1/fastchat/serve/monitor/elo_analysis.py): K=32, init rating=1000。
67
 
 
 
 
 
68
  #### 结论
69
 
70
  LLM模型最重要的还是logical reasoning的能力和encode knowledge的能力。因此模型的规模还是最重要的因素。通过QLoRA的方式可以让我们以足够低的成本finetune优化给定硬件条件下最大的模型。从而达到最优的效果。
@@ -77,7 +81,7 @@ Anima模型只通过10000 steps的训练,并没有深度优化训练数据的
77
 
78
  pip install -r https://github.com/lyogavin/Anima/blob/main/requirements.txt?raw=true
79
 
80
- 可以参考:[inferrence.ipynb]
81
 
82
  或者使用如下代码:
83
 
@@ -174,4 +178,3 @@ Anima模型只通过10000 steps的训练,并没有深度优化训练数据的
174
 
175
  我们坚持积累大量的中文全网社交媒体数据,积累了大量实时的对于爆款趋势的变化数据。通过结合爆款数据和最近的LLM AI技术,为内容创作者提供算法分发时代真正有效的竞争优势。
176
 
177
-
 
61
 
62
  #### 评估方法论
63
 
64
+ * **数据集的选择**:如[Belle Paper](https://github.com/LianjiaTech/BELLE/blob/main/docs/Towards%20Better%20Instruction%20Following%20Language%20Models%20for%20Chinese.pdf)中论述,评估集的不同类型分布对于评估结论影响巨大。如田忌赛马,以己之长攻人之短,很容易占优势。因此我们选择了英文chatbot模型研究工作中比较普遍公认的[Vicuna benchmark](https://lmsys.org/blog/2023-03-30-vicuna/)。为了评测中文,我们使用GPT4对于问题做了翻译。翻译代码和[数据集]([elo_tournanment_all_models_on_translated_vicuna.ipynb](https://github.com/lyogavin/Anima/blob/main/data/translated_vicuna_eval_set.json))。
65
  * **评估方法**: 为了平衡成本,我们主要采用GPT4进行评估。如[QLoRA](https://arxiv.org/abs/2305.14314) 论证,单纯GPT4打分进行模型的对比随机波动性较大。这与我们的观察一致。因此采用了[QLoRA](https://arxiv.org/abs/2305.14314) 推荐的,现在比较普遍采用的Elo Rating tournament评测方法。
66
  * **超参选择**:出于成本考虑,我们选择:300轮随机评估,随机选择模型PK的先后顺序以抵消先后顺序的影响,随机种子为:42。Elo rating的实现代码和其他超参参照[Vicuna的Elo代码](https://raw.githubusercontent.com/lm-sys/FastChat/833d65032a715240a3978f4a8f08e7a496c83cb1/fastchat/serve/monitor/elo_analysis.py): K=32, init rating=1000。
67
 
68
+ #### Elo rating tournament过程代码
69
+
70
+ [elo_tournanment_all_models_on_translated_vicuna.ipynb](https://github.com/lyogavin/Anima/blob/main/eval/elo_tournanment_all_models_on_translated_vicuna.ipynb)
71
+
72
  #### 结论
73
 
74
  LLM模型最重要的还是logical reasoning的能力和encode knowledge的能力。因此模型的规模还是最重要的因素。通过QLoRA的方式可以让我们以足够低的成本finetune优化给定硬件条件下最大的模型。从而达到最优的效果。
 
81
 
82
  pip install -r https://github.com/lyogavin/Anima/blob/main/requirements.txt?raw=true
83
 
84
+ 可以参考:[inferrence.ipynb](https://github.com/lyogavin/Anima/blob/main/examples/inferrence.ipynb)
85
 
86
  或者使用如下代码:
87
 
 
178
 
179
  我们坚持积累大量的中文全网社交媒体数据,积累了大量实时的对于爆款趋势的变化数据。通过结合爆款数据和最近的LLM AI技术,为内容创作者提供算法分发时代真正有效的竞争优势。
180