---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:221
- loss:BatchSemiHardTripletLoss
base_model: BAAI/bge-base-en
widget:
- source_sentence: '
Name : Baku
Category: Ride Sharing
Department: Sales
Location: Baku, Azerbaijan
Amount: 1247.88
Card: Client Engagement Activities
Trip Name: unknown
'
sentences:
- '
Name : Dome Interactive Designs
Category: Digital Display Solutions, Event Technology Rentals
Department: Sales
Location: Kyoto, Japan
Amount: 1832.34
Card: Virtual Reality Experience Stand
Trip Name: Global Tech Expo 2023
'
- '
Name : Il Vino e L''Arte
Category: Culinary Experience, Cultural Event Venue
Department: Marketing
Location: Rome, Italy
Amount: 748.32
Card: Cultural Engagement Dinner
Trip Name: unknown
'
- '
Name : Nordic Assurance Group
Category: Insurance Consulting, Risk Management Services
Department: Legal
Location: Oslo, Norway
Amount: 1225.75
Card: Annual Risk Assessment
Trip Name: unknown
'
- source_sentence: '
Name : Omni Utility Services
Category: Facility Management, Environmental Consulting
Department: Office Administration
Location: Melbourne, Australia
Amount: 1421.59
Card: Bi-monthly Utility Management
Trip Name: unknown
'
sentences:
- '
Name : InnovaThink Global
Category: Management Consultancy, Technical Training Services
Department: HR
Location: Zurich, Switzerland
Amount: 1675.32
Card: Innovation and Efficiency Program
Trip Name: unknown
'
- '
Name : Aperio Global Insights
Category: Strategic Business Consulting, Data Analytics Services
Department: Finance
Location: Chicago, IL
Amount: 3456.78
Card: Global Market Expansion Evaluation
Trip Name: unknown
'
- '
Name : NetWise Solutions
Category: Data Transfer Services, Digital Infrastructure
Department: Product
Location: Singapore
Amount: 1579.42
Card: Global Network Enhancement
Trip Name: unknown
'
- source_sentence: '
Name : Sphere Financial Systems
Category: Financial Management Services, International Billing Solutions
Department: Finance
Location: London, United Kingdom
Amount: 856.47
Card: Cross-Border Transaction Reconciliation
Trip Name: unknown
'
sentences:
- '
Name : Telestream Innovations
Category: Subscription Services, Internet & Network Services
Department: IT Operations
Location: Amsterdam, Netherlands
Amount: 1389.54
Card: Unified Communications Platform
Trip Name: unknown
'
- '
Name : Guava Growth Solutions
Category: Employee Engagement Platform, Team Building Activities
Department: HR
Location: San Francisco, USA
Amount: 1346.75
Card: Annual Team Cohesion Initiative
Trip Name: unknown
'
- '
Name : Anthro Insights
Category: Talent Acquisition Services, Corporate Education Programs
Department: Human Resource
Location: London, UK
Amount: 1440.75
Card: Diversity & Inclusion
Trip Name: unknown
'
- source_sentence: '
Name : NexGen Comms
Category: Telecom Services, Communications Solutions
Department: Sales
Location: Berlin, Germany
Amount: 879.45
Card: Q2 Client Outreach Program
Trip Name: unknown
'
sentences:
- '
Name : Kreutz & Partners
Category: Strategic Consulting
Department: Marketing
Location: Zurich, Switzerland
Amount: 982.75
Card: Digital Growth Strategy
Trip Name: unknown
'
- '
Name : Vigilant Protec
Category: Consulting Services, Cybersecurity Solutions
Department: Legal
Location: London, UK
Amount: 1987.65
Card: Global Compliance Enhancement
Trip Name: unknown
'
- '
Name : HelioNet Interactive
Category: Customer Engagement Platforms, Software Development Tools
Department: Product
Location: Vancouver, Canada
Amount: 1367.29
Card: Product Improvement Initiative
Trip Name: unknown
'
- source_sentence: '
Name : Apex Innovations Group
Category: Business Consulting, Training Services
Department: Executive
Location: Sydney, Australia
Amount: 1575.34
Card: Leadership Development Program
Trip Name: unknown
'
sentences:
- '
Name : Freenet AG
Category: Telecommunication Services
Department: IT Operations
Location: Zurich, Switzerland
Amount: 2794.37
Card: Infrastructure Support Services
Trip Name: unknown
'
- '
Name : CloudFlare Inc.
Category: Internet & Network Services, SaaS
Department: IT Operations
Location: New York, NY
Amount: 2000.0
Card: Annual Cloud Services Budget
Trip Name: unknown
'
- '
Name : EcoClean Systems
Category: Environmental Services, Industrial Equipment Care
Department: Office Administration
Location: San Francisco, CA
Amount: 952.63
Card: Essential Facility Sustainability
Trip Name: unknown
'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en
results:
- task:
type: triplet
name: Triplet
dataset:
name: bge base en train
type: bge-base-en-train
metrics:
- type: cosine_accuracy
value: 0.8371040723981901
name: Cosine Accuracy
- type: dot_accuracy
value: 0.16289592760180996
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.8280542986425339
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.8371040723981901
name: Euclidean Accuracy
- type: max_accuracy
value: 0.8371040723981901
name: Max Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: bge base en eval
type: bge-base-en-eval
metrics:
- type: cosine_accuracy
value: 1.0
name: Cosine Accuracy
- type: dot_accuracy
value: 0.0
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9714285714285714
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 1.0
name: Euclidean Accuracy
- type: max_accuracy
value: 1.0
name: Max Accuracy
---
# SentenceTransformer based on BAAI/bge-base-en
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("lzwcv/finetuned-bge-base-en")
# Run inference
sentences = [
'\nName : Apex Innovations Group\nCategory: Business Consulting, Training Services\nDepartment: Executive\nLocation: Sydney, Australia\nAmount: 1575.34\nCard: Leadership Development Program\nTrip Name: unknown\n',
'\nName : CloudFlare Inc.\nCategory: Internet & Network Services, SaaS\nDepartment: IT Operations\nLocation: New York, NY\nAmount: 2000.0\nCard: Annual Cloud Services Budget\nTrip Name: unknown\n',
'\nName : EcoClean Systems\nCategory: Environmental Services, Industrial Equipment Care\nDepartment: Office Administration\nLocation: San Francisco, CA\nAmount: 952.63\nCard: Essential Facility Sustainability\nTrip Name: unknown\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Triplet
* Dataset: `bge-base-en-train`
* Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| cosine_accuracy | 0.8371 |
| dot_accuracy | 0.1629 |
| manhattan_accuracy | 0.8281 |
| euclidean_accuracy | 0.8371 |
| **max_accuracy** | **0.8371** |
#### Triplet
* Dataset: `bge-base-en-eval`
* Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:--------|
| cosine_accuracy | 1.0 |
| dot_accuracy | 0.0 |
| manhattan_accuracy | 0.9714 |
| euclidean_accuracy | 1.0 |
| **max_accuracy** | **1.0** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 221 training samples
* Columns: sentence and label
* Approximate statistics based on the first 221 samples:
| | sentence | label |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type | string | int |
| details |
Name : Quantifire Insights
Category: Predictive Analytics Solutions
Department: Marketing
Location: Zurich, Switzerland
Amount: 1275.58
Card: Customer Engagement Enhancement
Trip Name: unknown
| 0 |
|
Name : ElevateLearning Solutions
Category: E-Learning Platforms, Collaborative Software
Department: Engineering
Location: Toronto, Canada
Amount: 1523.89
Card: Dev Team Skill Boosting Initiative
Trip Name: unknown
| 1 |
|
Name : Innovative Patents Co.
Category: Intellectual Property Services, Legal Services
Department: Legal
Location: New York, NY
Amount: 3250.0
Card: Patent Acquisition Fund
Trip Name: unknown
| 2 |
* Loss: [BatchSemiHardTripletLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
### Evaluation Dataset
#### Unnamed Dataset
* Size: 55 evaluation samples
* Columns: sentence and label
* Approximate statistics based on the first 55 samples:
| | sentence | label |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type | string | int |
| details |
Name : CyberGuard Provisions
Category: Security Software Solutions, Data Protection Services
Department: Information Security
Location: San Francisco, CA
Amount: 879.92
Card: Digital Fortress Action Plan
Trip Name: unknown
| 17 |
|
Name : Sphere Financial Systems
Category: Financial Management Services, International Billing Solutions
Department: Finance
Location: London, United Kingdom
Amount: 856.47
Card: Cross-Border Transaction Reconciliation
Trip Name: unknown
| 7 |
|
Name : RBC
Category: Transaction Processing, Financial Services
Department: Finance
Location: Limassol, Cyprus
Amount: 843.56
Card: Quarterly Financial Management
Trip Name: unknown
| 7 |
* Loss: [BatchSemiHardTripletLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `batch_sampler`: no_duplicates
#### All Hyperparameters