Original github repo is [here](https://github.com/greatlog/RealDAN) If this repo works for you, please cite our paper ```bitex @article{luo2023end, title={End-to-end Alternating Optimization for Real-World Blind Super Resolution}, author={Luo, Zhengxiong and Huang, Yan and Li, Shang and Wang, Liang and Tan, Tieniu}, journal={International Journal of Computer Vision (IJCV)}, year={2023} } ``` This repo is buid on the basis of [BasicSR](https://github.com/XPixelGroup/BasicSR) ## Model Weights Download the checkpoints of RealDAN. Put the downloaded checkpoints into [checkpoints](./checkpoints) ## Inference For inference on Real-World images ```bash cd codes/config/RealDAN python3 inference.py \ --opt options/test/dan_edsr_gan_real.yml \ --input_dir=/dir/of/input/images \ --output_dir=/dir/of/saved/outputs ``` For inference on blurry images ```bash cd codes/config/KernelDAN python3 inference.py \ --opt options/test/x4.yml \ --input_dir=/dir/of/input/images \ --output_dir=/dir/of/saved/outputs ``` ## Evaluation For evaluation on DIV2K-Real, please download the dataset to your own path, and run ```bash cd codes/config/RealDAN python3 test.py \ --opt options/test/dan_edsr_gan_syn.yml ``` and ```bash cd codes/config/RealDAN python3 test.py \ --opt options/test/dan_edsr_syn.yml ``` For evaluation on DIV2KRK, please download the [dataset](http://www.wisdom.weizmann.ac.il/~vision/kernelgan/DIV2KRK_public.zip) to your own path, and run ```bash cd codes/config/KernelDAN python3 test.py \ --opt options/test/x2.yml ``` and ```bash cd codes/config/KernelDAN python3 test.py \ --opt options/test/x4.yml ```