dododododo commited on
Commit
aef7bfb
1 Parent(s): 5c6a65a

Delete zero_to_fp32.py

Browse files
Files changed (1) hide show
  1. zero_to_fp32.py +0 -592
zero_to_fp32.py DELETED
@@ -1,592 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- # Copyright (c) Microsoft Corporation.
4
- # SPDX-License-Identifier: Apache-2.0
5
-
6
- # DeepSpeed Team
7
-
8
- # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
- # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
- # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
- # application.
12
- #
13
- # example: python zero_to_fp32.py . pytorch_model.bin
14
-
15
- import argparse
16
- import torch
17
- import glob
18
- import math
19
- import os
20
- import re
21
- from collections import OrderedDict
22
- from dataclasses import dataclass
23
-
24
- # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
- # DeepSpeed data structures it has to be available in the current python environment.
26
- from deepspeed.utils import logger
27
- from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
- FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
- FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
-
31
-
32
- @dataclass
33
- class zero_model_state:
34
- buffers: dict()
35
- param_shapes: dict()
36
- shared_params: list
37
- ds_version: int
38
- frozen_param_shapes: dict()
39
- frozen_param_fragments: dict()
40
-
41
-
42
- debug = 0
43
-
44
- # load to cpu
45
- device = torch.device('cpu')
46
-
47
-
48
- def atoi(text):
49
- return int(text) if text.isdigit() else text
50
-
51
-
52
- def natural_keys(text):
53
- '''
54
- alist.sort(key=natural_keys) sorts in human order
55
- http://nedbatchelder.com/blog/200712/human_sorting.html
56
- (See Toothy's implementation in the comments)
57
- '''
58
- return [atoi(c) for c in re.split(r'(\d+)', text)]
59
-
60
-
61
- def get_model_state_file(checkpoint_dir, zero_stage):
62
- if not os.path.isdir(checkpoint_dir):
63
- raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
-
65
- # there should be only one file
66
- if zero_stage <= 2:
67
- file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
- elif zero_stage == 3:
69
- file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
-
71
- if not os.path.exists(file):
72
- raise FileNotFoundError(f"can't find model states file at '{file}'")
73
-
74
- return file
75
-
76
-
77
- def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
- # XXX: need to test that this simple glob rule works for multi-node setup too
79
- ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
-
81
- if len(ckpt_files) == 0:
82
- raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
-
84
- return ckpt_files
85
-
86
-
87
- def get_optim_files(checkpoint_dir):
88
- return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
-
90
-
91
- def get_model_state_files(checkpoint_dir):
92
- return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
-
94
-
95
- def parse_model_states(files):
96
- zero_model_states = []
97
- for file in files:
98
- state_dict = torch.load(file, map_location=device)
99
-
100
- if BUFFER_NAMES not in state_dict:
101
- raise ValueError(f"{file} is not a model state checkpoint")
102
- buffer_names = state_dict[BUFFER_NAMES]
103
- if debug:
104
- print("Found buffers:", buffer_names)
105
-
106
- # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
- buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
- param_shapes = state_dict[PARAM_SHAPES]
109
-
110
- # collect parameters that are included in param_shapes
111
- param_names = []
112
- for s in param_shapes:
113
- for name in s.keys():
114
- param_names.append(name)
115
-
116
- # update with frozen parameters
117
- frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
- if frozen_param_shapes is not None:
119
- if debug:
120
- print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
- param_names += list(frozen_param_shapes.keys())
122
-
123
- # handle shared params
124
- shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
-
126
- ds_version = state_dict.get(DS_VERSION, None)
127
-
128
- frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
-
130
- z_model_state = zero_model_state(buffers=buffers,
131
- param_shapes=param_shapes,
132
- shared_params=shared_params,
133
- ds_version=ds_version,
134
- frozen_param_shapes=frozen_param_shapes,
135
- frozen_param_fragments=frozen_param_fragments)
136
- zero_model_states.append(z_model_state)
137
-
138
- return zero_model_states
139
-
140
-
141
- def parse_optim_states(files, ds_checkpoint_dir):
142
-
143
- total_files = len(files)
144
- state_dicts = []
145
- for f in files:
146
- state_dict = torch.load(f, map_location=device)
147
- # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
- # and also handle the case where it was already removed by another helper script
149
- state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
- state_dicts.append(state_dict)
151
-
152
- if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
- raise ValueError(f"{files[0]} is not a zero checkpoint")
154
- zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
- world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
-
157
- # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
- # parameters can be different from data parallelism for non-expert parameters. So we can just
159
- # use the max of the partition_count to get the dp world_size.
160
-
161
- if type(world_size) is list:
162
- world_size = max(world_size)
163
-
164
- if world_size != total_files:
165
- raise ValueError(
166
- f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
- "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
- )
169
-
170
- # the groups are named differently in each stage
171
- if zero_stage <= 2:
172
- fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
- elif zero_stage == 3:
174
- fp32_groups_key = FP32_FLAT_GROUPS
175
- else:
176
- raise ValueError(f"unknown zero stage {zero_stage}")
177
-
178
- if zero_stage <= 2:
179
- fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
- elif zero_stage == 3:
181
- # if there is more than one param group, there will be multiple flattened tensors - one
182
- # flattened tensor per group - for simplicity merge them into a single tensor
183
- #
184
- # XXX: could make the script more memory efficient for when there are multiple groups - it
185
- # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
-
187
- fp32_flat_groups = [
188
- torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
- ]
190
-
191
- return zero_stage, world_size, fp32_flat_groups
192
-
193
-
194
- def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
- """
196
- Returns fp32 state_dict reconstructed from ds checkpoint
197
-
198
- Args:
199
- - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
-
201
- """
202
- print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
-
204
- optim_files = get_optim_files(ds_checkpoint_dir)
205
- zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
- print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
-
208
- model_files = get_model_state_files(ds_checkpoint_dir)
209
-
210
- zero_model_states = parse_model_states(model_files)
211
- print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
-
213
- if zero_stage <= 2:
214
- return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
- elif zero_stage == 3:
216
- return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
-
218
-
219
- def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
- return
222
-
223
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
- frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
-
226
- if debug:
227
- num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
- print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
-
230
- wanted_params = len(frozen_param_shapes)
231
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
- avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
- print(f'Frozen params: Have {avail_numel} numels to process.')
234
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
-
236
- total_params = 0
237
- total_numel = 0
238
- for name, shape in frozen_param_shapes.items():
239
- total_params += 1
240
- unpartitioned_numel = shape.numel()
241
- total_numel += unpartitioned_numel
242
-
243
- state_dict[name] = frozen_param_fragments[name]
244
-
245
- if debug:
246
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
-
248
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
-
250
-
251
- def _has_callable(obj, fn):
252
- attr = getattr(obj, fn, None)
253
- return callable(attr)
254
-
255
-
256
- def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
- param_shapes = zero_model_states[0].param_shapes
258
-
259
- # Reconstruction protocol:
260
- #
261
- # XXX: document this
262
-
263
- if debug:
264
- for i in range(world_size):
265
- for j in range(len(fp32_flat_groups[0])):
266
- print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
-
268
- # XXX: memory usage doubles here (zero2)
269
- num_param_groups = len(fp32_flat_groups[0])
270
- merged_single_partition_of_fp32_groups = []
271
- for i in range(num_param_groups):
272
- merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
- full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
- merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
- avail_numel = sum(
276
- [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
-
278
- if debug:
279
- wanted_params = sum([len(shapes) for shapes in param_shapes])
280
- wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
- # not asserting if there is a mismatch due to possible padding
282
- print(f"Have {avail_numel} numels to process.")
283
- print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
-
285
- # params
286
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
- # out-of-core computing solution
288
- total_numel = 0
289
- total_params = 0
290
- for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
- offset = 0
292
- avail_numel = full_single_fp32_vector.numel()
293
- for name, shape in shapes.items():
294
-
295
- unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
- total_numel += unpartitioned_numel
297
- total_params += 1
298
-
299
- if debug:
300
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
- state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
- offset += unpartitioned_numel
303
-
304
- # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
- # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
- # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
- # live optimizer object, so we are checking that the numbers are within the right range
308
- align_to = 2 * world_size
309
-
310
- def zero2_align(x):
311
- return align_to * math.ceil(x / align_to)
312
-
313
- if debug:
314
- print(f"original offset={offset}, avail_numel={avail_numel}")
315
-
316
- offset = zero2_align(offset)
317
- avail_numel = zero2_align(avail_numel)
318
-
319
- if debug:
320
- print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
-
322
- # Sanity check
323
- if offset != avail_numel:
324
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
-
326
- print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
-
328
-
329
- def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
- state_dict = OrderedDict()
331
-
332
- # buffers
333
- buffers = zero_model_states[0].buffers
334
- state_dict.update(buffers)
335
- if debug:
336
- print(f"added {len(buffers)} buffers")
337
-
338
- _zero2_merge_frozen_params(state_dict, zero_model_states)
339
-
340
- _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
-
342
- # recover shared parameters
343
- for pair in zero_model_states[0].shared_params:
344
- if pair[1] in state_dict:
345
- state_dict[pair[0]] = state_dict[pair[1]]
346
-
347
- return state_dict
348
-
349
-
350
- def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
- remainder = unpartitioned_numel % world_size
352
- padding_numel = (world_size - remainder) if remainder else 0
353
- partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
- return partitioned_numel, padding_numel
355
-
356
-
357
- def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
- return
360
-
361
- if debug:
362
- for i in range(world_size):
363
- num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
- print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
-
366
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
- wanted_params = len(frozen_param_shapes)
368
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
- avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
- print(f'Frozen params: Have {avail_numel} numels to process.')
371
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
-
373
- total_params = 0
374
- total_numel = 0
375
- for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
- total_params += 1
377
- unpartitioned_numel = shape.numel()
378
- total_numel += unpartitioned_numel
379
-
380
- param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
- state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
-
383
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
-
385
- if debug:
386
- print(
387
- f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
- )
389
-
390
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
-
392
-
393
- def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
- param_shapes = zero_model_states[0].param_shapes
395
- avail_numel = fp32_flat_groups[0].numel() * world_size
396
- # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
- # param, re-consolidating each param, while dealing with padding if any
398
-
399
- # merge list of dicts, preserving order
400
- param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
-
402
- if debug:
403
- for i in range(world_size):
404
- print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
-
406
- wanted_params = len(param_shapes)
407
- wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
- # not asserting if there is a mismatch due to possible padding
409
- avail_numel = fp32_flat_groups[0].numel() * world_size
410
- print(f"Trainable params: Have {avail_numel} numels to process.")
411
- print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
-
413
- # params
414
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
- # out-of-core computing solution
416
- offset = 0
417
- total_numel = 0
418
- total_params = 0
419
- for name, shape in param_shapes.items():
420
-
421
- unpartitioned_numel = shape.numel()
422
- total_numel += unpartitioned_numel
423
- total_params += 1
424
-
425
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
-
427
- if debug:
428
- print(
429
- f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
- )
431
-
432
- # XXX: memory usage doubles here
433
- state_dict[name] = torch.cat(
434
- tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
- 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
- offset += partitioned_numel
437
-
438
- offset *= world_size
439
-
440
- # Sanity check
441
- if offset != avail_numel:
442
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
-
444
- print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
-
446
-
447
- def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
- state_dict = OrderedDict()
449
-
450
- # buffers
451
- buffers = zero_model_states[0].buffers
452
- state_dict.update(buffers)
453
- if debug:
454
- print(f"added {len(buffers)} buffers")
455
-
456
- _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
-
458
- _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
-
460
- # recover shared parameters
461
- for pair in zero_model_states[0].shared_params:
462
- if pair[1] in state_dict:
463
- state_dict[pair[0]] = state_dict[pair[1]]
464
-
465
- return state_dict
466
-
467
-
468
- def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
- """
470
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
- ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
- via a model hub.
473
-
474
- Args:
475
- - ``checkpoint_dir``: path to the desired checkpoint folder
476
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
-
478
- Returns:
479
- - pytorch ``state_dict``
480
-
481
- Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
- you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
- the checkpoint.
484
-
485
- A typical usage might be ::
486
-
487
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
- # do the training and checkpoint saving
489
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
- model = model.cpu() # move to cpu
491
- model.load_state_dict(state_dict)
492
- # submit to model hub or save the model to share with others
493
-
494
- In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
- application. i.e. you will need to re-initialize the deepspeed engine, since
496
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
-
498
- If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
-
500
- """
501
- if tag is None:
502
- latest_path = os.path.join(checkpoint_dir, 'latest')
503
- if os.path.isfile(latest_path):
504
- with open(latest_path, 'r') as fd:
505
- tag = fd.read().strip()
506
- else:
507
- raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
-
509
- ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
-
511
- if not os.path.isdir(ds_checkpoint_dir):
512
- raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
-
514
- return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
-
516
-
517
- def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
- """
519
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
- loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
-
522
- Args:
523
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
- - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
- """
527
-
528
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
- print(f"Saving fp32 state dict to {output_file}")
530
- torch.save(state_dict, output_file)
531
-
532
-
533
- def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
- """
535
- 1. Put the provided model to cpu
536
- 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
- 3. Load it into the provided model
538
-
539
- Args:
540
- - ``model``: the model object to update
541
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
-
544
- Returns:
545
- - ``model`: modified model
546
-
547
- Make sure you have plenty of CPU memory available before you call this function. If you don't
548
- have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
- conveniently placed for you in the checkpoint folder.
550
-
551
- A typical usage might be ::
552
-
553
- from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
- model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
- # submit to model hub or save the model to share with others
556
-
557
- Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
- of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
-
561
- """
562
- logger.info(f"Extracting fp32 weights")
563
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
-
565
- logger.info(f"Overwriting model with fp32 weights")
566
- model = model.cpu()
567
- model.load_state_dict(state_dict, strict=False)
568
-
569
- return model
570
-
571
-
572
- if __name__ == "__main__":
573
-
574
- parser = argparse.ArgumentParser()
575
- parser.add_argument("checkpoint_dir",
576
- type=str,
577
- help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
- parser.add_argument(
579
- "output_file",
580
- type=str,
581
- help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
- parser.add_argument("-t",
583
- "--tag",
584
- type=str,
585
- default=None,
586
- help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
- parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
- args = parser.parse_args()
589
-
590
- debug = args.debug
591
-
592
- convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)