File size: 12,727 Bytes
2c86c91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
import argparse
import os
from collections import OrderedDict
import torch
from transformers import LlamaConfig, LlamaForCausalLM
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
import accelerate
transformer_layer_name_list = {
"input_norm": [
"input_norm.weight",
"self_attention.norm_qkv.layer_norm_weight",
],
"query_key_value": [
"self_attention.query_key_value.weight",
"self_attention.norm_qkv.weight",
],
"query": ["self_attention.query.weight"],
"key_value": ["self_attention.key_value.weight"],
"o_proj": ["self_attention.dense.weight", "self_attention.proj.weight"],
"mlp_gate_up": ["mlp.dense_h_to_4h.weight", "norm_mlp.fc1_weight"],
"mlp_down": ["mlp.dense_4h_to_h.weight", "norm_mlp.fc2_weight"],
"post_attention_norm": [
"post_attention_norm.weight",
"norm_mlp.layer_norm_weight",
],
}
def recursive_print(name, val, spaces=0):
# Format the message.
if name is None:
msg = None
else:
fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}"
msg = fmt.format(name)
# Print and recurse (if needed).
if isinstance(val, dict):
if msg is not None:
print(msg)
for k in val.keys():
recursive_print(k, val[k], spaces + 2)
elif isinstance(val, torch.Tensor):
print(msg, ":", val.size())
else:
print(msg, ":", val)
def get(dicts, key):
return [dict[key] for dict in dicts]
def check_get(dicts, prefix, key_list):
return [
dict[prefix + key] for dict in dicts for key in key_list if prefix + key in dict
]
def check_assign(encoder, this_layer_index, this_encoder, layer_index, key_list):
for key in key_list:
full_key = f"layers.{layer_index}." + key
if full_key in this_encoder:
encoder[f"layers.{this_layer_index}." + key] = this_encoder[full_key]
break
return encoder
def merge_col(tensors):
return torch.cat(
[
tensor["weight"] if type(tensor) is OrderedDict else tensor
for tensor in tensors
],
dim=0,
)
def merge_row(tensors):
return torch.cat(
[
tensor["weight"] if type(tensor) is OrderedDict else tensor
for tensor in tensors
],
dim=1,
)
def convert_megatron_checkpoint(hf_model, state_dicts, model_config: LlamaConfig):
# The model.
models = get(state_dicts, "model")
# The language model.
lms = get(models, "language_model")
# The embeddings.
embeddings = get(lms, "embedding")
# The word embeddings.
word_embeddings = get(embeddings, "word_embeddings")
# Truncate the embedding table to vocab_size rows.
merged_padded_word_embeddings = merge_col(word_embeddings)
merged_word_embeddings = merged_padded_word_embeddings[: model_config.vocab_size, :]
hf_model.model.embed_tokens.load_state_dict(
{"weight": merged_word_embeddings}, strict=True
)
# The transformer.
transformers = get(lms, "encoder")
for i in range(model_config.num_hidden_layers):
print("Converting layer", i)
prefix = f"layers.{i}."
layer: LlamaDecoderLayer = hf_model.model.layers[i]
layer.input_layernorm.load_state_dict(
{
"weight": check_get(
transformers, prefix, transformer_layer_name_list["input_norm"]
)[0]
},
strict=True,
)
hidden_size = model_config.hidden_size
inter_size = model_config.intermediate_size
num_heads = model_config.num_attention_heads
kv_heads = model_config.num_key_value_heads
kv_hidden_size = hidden_size // num_heads * kv_heads
if num_heads == kv_heads:
qkv = merge_col(
check_get(
transformers, prefix, transformer_layer_name_list["query_key_value"]
)
)
qkv = qkv.view(num_heads, 3, hidden_size // num_heads, hidden_size)
q, k, v = torch.chunk(qkv, 3, dim=1)
q, k, v = (
q.reshape(hidden_size, hidden_size),
k.reshape(hidden_size, hidden_size),
v.reshape(hidden_size, hidden_size),
)
else:
qkv = merge_col(
check_get(
transformers, prefix, transformer_layer_name_list["query_key_value"]
)
)
num_queries_per_key_value = num_heads // kv_heads
qkv = qkv.view(
kv_heads,
num_queries_per_key_value + 2,
hidden_size // num_heads,
hidden_size,
)
q, k, v = torch.split(qkv, [num_queries_per_key_value, 1, 1], dim=1)
q, k, v = (
q.reshape(hidden_size, hidden_size),
k.reshape(kv_hidden_size, hidden_size),
v.reshape(kv_hidden_size, hidden_size),
)
layer.self_attn.q_proj.load_state_dict({"weight": q}, strict=True)
layer.self_attn.k_proj.load_state_dict({"weight": k}, strict=True)
layer.self_attn.v_proj.load_state_dict({"weight": v}, strict=True)
layer.self_attn.o_proj.load_state_dict(
{
"weight": merge_row(
check_get(
transformers, prefix, transformer_layer_name_list["o_proj"]
)
)
},
strict=True,
)
gate, up = (
merge_col(
check_get(
transformers, prefix, transformer_layer_name_list["mlp_gate_up"]
)
)
.view(len(state_dicts), 2, -1, hidden_size)
.chunk(2, dim=1)
)
gate, up = gate.reshape(inter_size, hidden_size), up.reshape(
inter_size, hidden_size
)
layer.mlp.gate_proj.load_state_dict({"weight": gate}, strict=True)
layer.mlp.up_proj.load_state_dict({"weight": up}, strict=True)
layer.mlp.down_proj.load_state_dict(
{
"weight": merge_row(
check_get(
transformers, prefix, transformer_layer_name_list["mlp_down"]
)
)
},
strict=True,
)
layer.post_attention_layernorm.load_state_dict(
{
"weight": check_get(
transformers,
prefix,
transformer_layer_name_list["post_attention_norm"],
)[0]
},
strict=True,
)
# The final norm.
hf_model.model.norm.load_state_dict(
{"weight": transformers[0]["final_norm.weight"]}, strict=True
)
# For LM head, transformers' wants the matrix to weight embeddings.
output_layers = get(lms, "output_layer")
merged_padded_output_layers = merge_col(output_layers)
merged_output_layers = merged_padded_output_layers[: model_config.vocab_size, :]
hf_model.lm_head.load_state_dict({"weight": merged_output_layers}, strict=True)
def check_padded_vocab_size(train_args, orig_vocab_size):
"""Pad vocab size so it is divisible by model parallel size and
still having GPU friendly size."""
after = orig_vocab_size
multiple = (
train_args.make_vocab_size_divisible_by * train_args.tensor_model_parallel_size
)
while (after % multiple) != 0:
after += 1
assert (
train_args.padded_vocab_size == after
), "Mismatched vocab size and padded vocab size."
def get_train_args(state_dict):
args = state_dict.get("args", None)
assert args is not None
return args
def get_model_config(train_args, vocab_size):
config = LlamaConfig()
check_padded_vocab_size(train_args, vocab_size)
config.vocab_size = vocab_size
# config.vocab_size = train_args.padded_vocab_size
config.max_position_embeddings = train_args.max_position_embeddings
config.hidden_size = train_args.hidden_size
config.num_hidden_layers = train_args.num_layers
config.num_attention_heads = train_args.num_attention_heads
config.num_key_value_heads = train_args.num_query_groups
config.intermediate_size = train_args.ffn_hidden_size
if hasattr(train_args, "rope_base"):
config.rope_theta = train_args.rope_base
config.pad_token_id = 0
config.torch_dtype = train_args.params_dtype
return config
def load_state_dicts(input_dir):
state_dicts = [
torch.load(os.path.join(f.path, "model_optim_rng.pt"), map_location="cpu")
for f in os.scandir(input_dir)
if f.is_dir()
]
args = get_train_args(state_dicts[0])
if args.transformer_pipeline_model_parallel_size == 1:
return state_dicts, args
state_dicts = []
tp_size = args.tensor_model_parallel_size
pp_size = args.transformer_pipeline_model_parallel_size
num_layers_per_pile = args.num_layers // pp_size
for tp_index in range(tp_size):
model_file = f"{input_dir}/mp_rank_{tp_index:02d}_000/model_optim_rng.pt"
print(f"loading {model_file}")
state_dict = torch.load(
model_file,
map_location="cpu",
)
lm = state_dict["model"]["language_model"]
encoder = lm["encoder"]
for pp_index in range(1, pp_size):
model_file = f"{input_dir}/mp_rank_{tp_index:02d}_{pp_index:03d}/model_optim_rng.pt"
this_state_dict = torch.load(
model_file,
map_location="cpu",
)
print(f"loading {model_file}")
this_lm = this_state_dict["model"]["language_model"]
this_encoder = this_lm["encoder"]
if pp_index == pp_size - 1:
lm["output_layer"] = this_lm["output_layer"]
encoder["final_norm.weight"] = this_encoder[
"final_norm.weight"
]
for layer_index in range(num_layers_per_pile):
this_layer_index = layer_index + num_layers_per_pile * pp_index
if args.num_attention_heads == args.num_query_groups:
encoder = check_assign(
encoder,
this_layer_index,
this_encoder,
layer_index,
key_list=transformer_layer_name_list["query_key_value"],
)
else:
for key in ["query", "key_value", "query_key_value"]:
encoder = check_assign(
encoder,
this_layer_index,
this_encoder,
layer_index,
key_list=transformer_layer_name_list[key],
)
for key in transformer_layer_name_list.keys():
if key not in ("query_key_value", "query", "key_value"):
encoder = check_assign(
encoder,
this_layer_index,
this_encoder,
layer_index,
key_list=transformer_layer_name_list[key],
)
state_dicts.append(state_dict)
return state_dicts, args
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--input-dir",
type=str,
help="Path to the megatron checkpoint dir",
)
parser.add_argument(
"--output-dir",
type=str,
help="Path to the huggingface checkpoint dir",
)
parser.add_argument(
"--vocab-size",
type=int,
default=64000,
help="unpadded tokenizer vocab size",
)
args = parser.parse_args()
print("Load megatron checkpoint")
state_dicts, train_args = load_state_dicts(args.input_dir)
model_config = get_model_config(train_args, args.vocab_size)
print(f"Model config: {model_config}", flush=True)
print("Create hf model", flush=True)
# with accelerate.init_empty_weights():
hf_model = LlamaForCausalLM(model_config)
hf_model = hf_model.to(torch.bfloat16)
print("convert megatron to hf", flush=True)
convert_megatron_checkpoint(hf_model, state_dicts, model_config)
print("save hf model", flush=True)
hf_model.save_pretrained(args.output_dir, safe_serialization=False)
if __name__ == "__main__":
main()
|