diff --git "a/README.md" "b/README.md" --- "a/README.md" +++ "b/README.md" @@ -1,16 +1,36 @@ --- +base_model: sentence-transformers/paraphrase-mpnet-base-v2 library_name: setfit +metrics: +- accuracy +pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer -base_model: sentence-transformers/paraphrase-mpnet-base-v2 -metrics: -- accuracy -widget: [] -pipeline_tag: text-classification +widget: +- text: We will get back to you. +- text: I think so. +- text: So I wish those were quick calling. +- text: ' If you''re about any Medicare benefits go website, I''m more than happy + to assist you. We''ll let you know all the benefits and saving options.' +- text: i'll have to decline sorry inference: true +model-index: +- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 + results: + - task: + type: text-classification + name: Text Classification + dataset: + name: Unknown + type: unknown + split: test + metrics: + - type: accuracy + value: 0.8268669169795578 + name: Accuracy --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 @@ -29,7 +49,7 @@ The model has been trained using an efficient few-shot learning technique that i - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens -- **Number of Classes:** 29 classes +- **Number of Classes:** 30 classes @@ -40,6 +60,47 @@ The model has been trained using an efficient few-shot learning technique that i - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) +### Model Labels +| Label | Examples | +|:---------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| +| GreetBack | | +| answering_machine | | +| affirmation | | +| calling_about | | +| decline | | +| BUSY | | +| who_are_you | | +| hold_a_sec | | +| where_are_you_calling_from | | +| other | | +| interested | | +| weather | | +| Not_Interested | | +| provide_age | | +| DNC | | +| sorry_greeting | | +| where_get_number | | +| abusive | | +| can_you_email | | +| already | | +| transfer_request | | +| DNQ | | +| greetings | | +| language_barrier | | +| are_you_bot | | +| complain_calls | | +| not_decision_maker | | +| scam | | +| say_again | | +| callback | | + +## Evaluation + +### Metrics +| Label | Accuracy | +|:--------|:---------| +| **all** | 0.8269 | + ## Uses ### Direct Use for Inference @@ -56,9 +117,9 @@ Then you can load this model and run inference. from setfit import SetFitModel # Download from the 🤗 Hub -model = SetFitModel.from_pretrained("setfit_model_id") +model = SetFitModel.from_pretrained("m-aliabbas1/medicare_idrak") # Run inference -preds = model("I loved the spiderman movie!") +preds = model("I think so.") ```